Task 1.2

Title

Reservoir stimulation and engineering

Projects (presented on the following pages)

Evaporitically-triggered thermo-haline circulation and its influence on geothermal anomalies near unconformities Julian Mindel

High-resolution temporo-ensembe PIV to resolve pore-scale flow in fractured porous media Mehrdad Ahkami, Thomas Roesgen, Martin O. Saar, Xiang-Zhao Kong

Fracture process zone in anisotropic rock Nathan Dutler, Morteza Nejati, Benoît Valley, Florian Amann

On the variability of the seismic response during multiple decameter-scale hydraulic stimulations at the Grimsel Test Site Linus Villiger, Valentin Gischig, Joseph Doetsch, Hannes Krietsch, Nathan Dutler, Mohammedreza Jalali, Benoit Valley, Florian Amann, Stefan Wiemer

Does a cyclic fracturing process agree with a fluid driven fracture solution? Nathan Dutler, Benoît Valley, Valentin Gischig, Linus Villiger, Joseph Doetsch, Reza Jalali, Florian Amann

Investigation on Hydraulic Fracturing of Granite Arabelle de Saussure

Advances in laboratory investigation of fluid-driven fractures Thomas Blum, Brice Lecampion

Building a geological model for analysis and numerical modelling of hydraulic stimulation experiments

Hannes Krietsch, J. Doetsch, V. Gischig, M.R. Jalali, N. Dutler, F. Amann and S. Loew

Julian Mindel, Institute of Geochemistry and Petrology, ETH Zurich Results

Schweizerische Eidgenossenschaft Confederation suisse Confederazione Svizzera Confederazion svizra Swiss Confederation Innosuisse - Swiss Innovation Agenc

ETH zürich

Supported by:

Abstract / Background

SWISS COMPETENCE CENTER for ENERGY RESEARCH

SCCER SOE

f ELECTRICITY

SUPPLY o

We hypothesize that downward flow of cooler basin brines may displace and mobilize stagnant, hotter, chemically stratified, and often fracture-hosted brines in sediment-covered basements. Previous conceptual studies postulated fingering as a major hydraulic mechanism allowing for mutually up-/and downward flows of brines from the two reservoirs. We assume this is a potential key factor in establishing geothermal anomalies as well as the formation of basin-hosted ore deposits.

We have thus created the prototype of a hydrothermal simulation tool in which faults and fractures can be explicitly represented within a porous matrix. To understand how geometric complexity of the fractures affects thermo-haline transport, we performed a series of simulations utilizing an accurate equation of state. We designed synthetic geometries to study the propagation of salinity fronts using a simulator based on the CSMP++ library (Paluszny et al., 2007), honoring the governing equations for compressible porous media flow and saline transport (Geiger et al., 2006; Weis et al., 2014). This work is a further step towards modeling thermo-haline convection within realistic

This work is a further step towards modeling thermo-haline convection within realistic representations of discrete networks of thin fractures, a scenario typically observed in basement rocks of deep geothermal systems and at basement/sediment interfaces and related deposits of U, Pn, Zn, and others.

Conceptual Model

The sequence of events remains debatable in some aspects and could be site-specific. In general, we assume that the heavier and oxidizing/acidic new brine originating from the evaporating sea invades the more permeable basin rock and establishes flow.

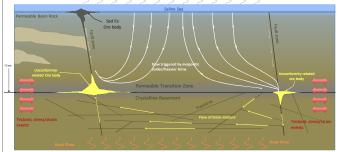
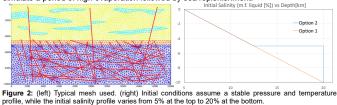


Figure 1 :Conceptual model showing at least two main available flow mixing paths created by invading evaporitic brines.

- Neglecting any transient effects of tectonics, at least two types of flow paths may form:
 Invading evaporitic brines mix with and push mineral-rich basin brines upwards via a highly permeable conduit in an "excavating" fashion. Thus, different minerals should form along the flow path at different depths and into what is known as sedimentary exhalative type of deposits.
- depths and into what is known as sedimentary exhatative type of deposits.
 2. The invading brine, mixed with metal-rich basinal brines, flows into the fractured basement. The new, basinal, and basement brines mix and push out reducing/alkaline basement brines through available exits of the existing basement fracture network.

The permeable transition zone, due to its relatively higher permeability and porosity, acts as a chemical interface for the mixing of brines (i.e. new, basinal, basement) thus contributing to localized redox reactions. Due to temperature, pressure, medium (in terms of pore-space, permeability, and chemistry), and mixing flow conditions, thermal anomalies also very likely to form on and around intersections of fractures and the permeable transition zone.

Governing Equations, Boundary & Initial Conditions


We assume compressible single phase flow in porous media, and thus the continuum governing equations may be written as follows,

$$\mathbf{v} = -\frac{k}{\mu} (\nabla p - \rho_f \mathbf{g}) \qquad \qquad \mathsf{Darcy} \qquad \qquad \frac{\partial(\phi \rho_f h_f)}{\partial t} + \nabla \cdot (\rho_f h_f \mathbf{v}) = 0 \qquad \qquad \mathsf{Energy} \\ \frac{\partial(\rho_f \phi)}{\partial t} + \nabla \cdot (\rho_f \mathbf{v}), +q_{\rho_f} = 0 \qquad \qquad \mathsf{Mass} \qquad \qquad \frac{\partial(\phi \rho_f h_f)}{\partial t} + \nabla \cdot (\rho_f \mathcal{X}), +q_{\rho_f \mathcal{X}} = 0 \qquad \qquad \mathsf{Salinity}$$

Density, enthalpy, and heat capacity are all functions of pressure, temperature, and mass fraction of NaCl. While neglecting salinity diffusion, we also consider the material properties of the porous rock to be isotropic, uniform, and constant. The initial pressure, temperature, and salinity profiles are considered stable, and the mesh we use is static.

We designed synthetic models with a low permeability matrix in the basement, many permeable fractures, and several faults zones. Each one of these regions is assigned independent material properties, including a "thickness" value, to allow dimensional consistency with LDE's.

In all our models, we set up time-invariant Dirichlet conditions for pressure and temperature in the top boundary, and a heat flux boundary condition at the bottom boundary. In contrast, the boundary condition for NaCl mass fraction is initially stable at 5% for the first 10000 years (i.e. simulated time), followed by a time varying period 10000 years. This time-varying period begins at 5% and grows to 25% during the first 1000 years, remains steady for the next 8000, and tapers off back to 5% for the next 1000. The aim is to simulate a period of high evaporation followed by sea replenishment.

We set up two separate fluid-tracking tracers: one for the evaporitic brine and the other aimed at the basement brine. With the help of the tracers, as well as temperature conditions, we set up two markers (shown in teal for Marker 1 and orange for Marker 2 in Figures 3 and 4) so that we may approximate and observe the level of mixing.

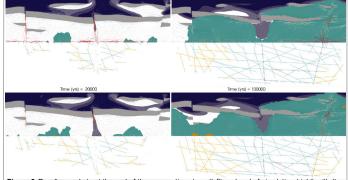


Figure 3: Result snapshots at the end of the evaporation stage (left) and end of simulation (right) with (top row) and without (bottom row) a permeable transition zone. A dark blue tracer is set to track incoming fluid from the top boundary. Through-going basin Obstacle permeability is 10^-17

<u>Marker 1</u> tracks locations in the domain where both the new and basement brine content are above 3% (that is, the total fluid mass fraction of the liquid is 6% basement + new brine, the rest (most of it) is basinal brine) and the temperature is at least 50°C. <u>Marker 2</u> follows a similar philosophy, restricting the conditions to 10% (5% of new brine and 5% of basement brine) and the temperature to a typical (at least in the Uranium case) ore forming 130°C. It also restricts its tracking to the permeable transition zone, which is where it is assumed that the likelihood of precipitation is the highest.

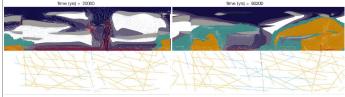


Figure 4: Result snapshots at the end of the evaporation stage (left) and end of simulation (right) with a permeable transition zone. Obstacles in sedimentary basin either spread-out in this case. Obstacle permeability is 10^-17

The low percentages used in the markers arise from the fact that the only portion of basement brine that is truly mobile is in the fractures, which corresponds to a relatively small amount of the total brine content in the domain, and that the "new" incoming brine is only being fluxed in for a limited time. Most of the mobilized fluid consists of pre-existing basinal brine, which is the richest and metal-bearing one. While the markers do not track actual precipitation because we have not used reactive transport modelling features for this study (i.e. yet!), they indicate where it is very likely that precipitation may happen.

Figure 5 shows a snapshots of a simulation that differs from Figure 3 (top row) only in its initial salinity profile (i.e. using "option 2" from Figure 2). Such a scenario assumes that basement brine salinity is much higher than that of a linear-with-depth profile.



Figure 5:Result snapshots at the end of the evaporation stage (left) and end of simulation (right) with a permeable transition zone and through-going obstacles. Simulation is identical to Figure 3 (top row) with a constant initial salinity m.f. of 0.2 in the basement (see Figure 2 - Initial salinity profile, Option 2).

Conclusions & Outlook

Temperature, pressure, and salinity, together with medium pore-space and permeability create the mixing flow conditions which, as expected, show a particular predilection for the vicinity of unconformities.

We established slightly more-complex-than proof of concept simulations in a bid to understand the onset of geothermal anomalies in particular circumstances/scenarios. Results show promise by pointing out probable locations with the help of markers, which help track pre-selected conditions. They also serve to highlight the importance of initial conditions, sedimentary "obstacle" permeability, and the numerous possible scenarios that would need to be simulated, carrying out a sensitivity analysis, all of which is still needed prior to drafting any strong conclusions.

References

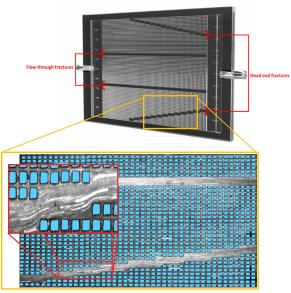
- 1. Geiger, S. et al.(2006) Transport in Porous Media, 63, 399-434, doi:
- 10.1007/s11242-005-0108-z
- 2. Paluszny, A. et al (2007) Geofluids, 7: 186–208.
- 3. Weis, P. et al. (2014), Geofluids, 14(3): 347-371, doi: 10.1111/gfl.12080

Supported by: Confédération suisse Confédérazione Svizzera Confederaziun svizra Swiss Confederation

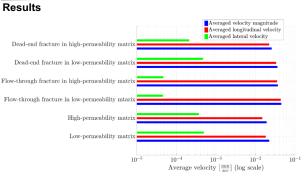
Innosuisse – Swiss Innovation Age

High-resolution temporo-ensembe PIV to resolve pore-scale flow in fractured porous media

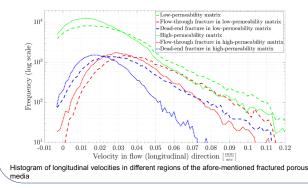
Mehrdad Ahkami, Thomas Roesgen, Martin O. Saar, Xiang-Zhao Kong

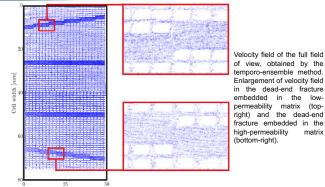

Motivation Fractures are conduits that can enable fast advective transfer of (fluid, solute, reactant, particle, etc.) mass and energy. Such fast transfer can significantly affect pore-scale physico-chemical processes which in turn can affect macroscopic mass and energy transport characteristics. Therefore, it is crucial to determine pore-scale transport properties and then upscale these properties to larger scales. However, only a limited number of experimental studies with sufficient spatial resolution over large Representative Elementary Volumes have been conducted to characterize fluid flow and transport features in fractured porous media.

Methodology


Experimental setup: In this study, 3D-printing technology is employed to manufacture a transparent fractured porous medium to resemble dual-permeability and dual-porosity subsurface formations. Square pillars with a size of 800 µm are 3D-printed to construct fractured porous matrices inside the cell. Parallel to the main flow direction, the cell is divided into two halves: one half being a high-permeability matrix with 300 µm spacing between the pillars and the other half being a low-permeability matrix with 200 µm spacing between the pillars. Moreover, we embed one flow-through fracture and one dead-end fracture within each porous matrix. The permeabilities of two matrices are ~4.0 \times 10⁻⁹ m² and ~7.5 \times 10⁻⁹ m², respectively.

Due to an in-line illumination configuration, the seeding particles in the fluid cast shadows on a bright background. We then use Particle Shadow Velocimetry (PSV) method to optically resolve the fluid flow.

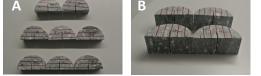

Temporo-ensemble PIV: Classical PIV method generally employs a relatively large interrogation window and can thus not resolve pore-scale micro-features of fluid flow. In this study, we introduce a new high-resolution PIV method that we term "temporo-ensemble PIV" that can reduce the size of the interrogation window down to ultimately one single pixel. Such a small interrogation window size enables substantially increased spatial resolutions of velocity vectors per unit area in 2D (or unit volume in 3D), allowing delineations of small, pore-scale flow features that are part of a much larger Field of View (FOV). We apply our new method to visualize a 2D fluid flow in a 3D-printed, fractured porous medium.



A time-lapse image of particle trajectories, captured during a time interval of 25 sec. The whiteness quantifies the particle density. Blue patches indicate the masks which are applied to exclude regions of impermeable pillars during the PIV calculations.

Average Velocity magnitude, average longitudinal velocities, and average lateral velocities of low- and high-permeability matrices as well as embedded dead-end and flow-through fractures.

Cell length [mn


Conclusion

 The presented approach can resolve high-resolution 2D velocities in engineered porous media with various levels of heterogeneities.

- Compared to standard PIV methods, our approach preserves high spatial resolutions of velocity vectors, while enabling a large field of view.
- The resulting high-resolution velocity vectors delineate detailed 2D fluid flow structures in various regions of the 3D-printed fractured porous medium. This enables the analysis of various flow interactions, such as those between porous matrices, with different permeabilities and/or porosities, or between fractures and their surrounding porous matrices.
- Our work facilitates experimental investigations of pore-scale physico-chemical processes, with implications for various industrial and scientific fields such as the oil and gas industry, hydrogeology, geothermics, geochemistry.

growth direction and the anisotropy (foliation) for the Grimsel Stimulation and Circulation project (Amann et al., 2018) and tested using a notched semi-circular bending (NSCB) method. The foliation consist essentially of aligned phylosilicate minerals.

mbers with the foliation aligned (ϕ =90°) and normal (ϕ =0°) to Figure 1: A) and B) pr the artificial notch. ents the two endm

2. Methods

Three-point-bending tests on notched semi-circular specimens (Kuruppu et al., 2014) were performed. The deformation field of the specimens was monitored using Digital Image Correlation (DIC).

15 specimens are tested with 2 different configurations (0°, 90°)

A quasi-static load was applied with controlled displacement rate of 0.1 mm/min

- Specimens are colored in white and afterwards fine sparkled with an air brush (Figure 2B)

- Stereo Digital Image Correlation (DIC) is used to get the strain field with a frequency of 4 Hz during the tests (Cam 1 + 2)

Figure 2: A) Zwick universal testing machine with view on the sample side. B) sparkled specimen for DIC C) The DIC system with two Prosilica GT3400 (red)

3. Localized FPZ at peak load

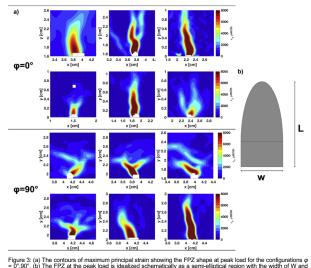
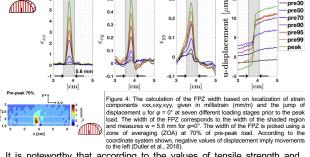



Figure 3: (a) The contours of max = 0°,90°. (b) The FPZ at the peak (b) The FPZ at the peak of L (Dutler et al., 2018).

It is noteworthy that according to the values of tensile strength and Young's moduli, a critical tensile strain of about 270 and 350 micro strains are obtained for the principal directions normal and parallel to

	φ	σ_{t}	E	€c
$\sigma_t = E\epsilon_c$	0°	5.63	21	270
	90°	14.69	42	350

From the ε_{xx} plot in Fig. 4, it is seen that such values of critical strain are exceeded at a loading stage between 50% and 70% of the peak load. This loading level is in a very good agreement with the general belief that the development of inelastic deformation of quasi-brittle materials start at about 60-70% of the peak load.

5. The size of the FPZ

the foliation.

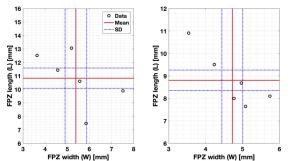
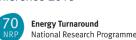


Figure 5: The measured values for the FPZ width (W) and length (L) for two cases of $\phi = 0^{\circ}$ and $\phi = 90^{\circ}$. The mean values of the six tests are shown by red line, while the blue pointed line show the standard deviation. The results are taken from the fully formed FPZ, i.e. at 70% of pre-peak load for $\phi = 0^{\circ}$ and 90% of pre-peak load for $\phi = 0^{\circ}$ and 90% of pre-peak load for $\phi = 0^{\circ}$ (Dutler et al., 2016).


- In both configurations $\varphi = 0^{\circ}$ and $\varphi = 90^{\circ}$, the average length to width ratio is L/W≈2.
- The fracture process zone is larger in size when the crack grows along the foliation compared to the case it propagates normal to the foliation. The ratio of the FPZ size in two directions is $L^{\varphi=0^{\circ}}/L^{\varphi=0^{\circ}}$ ^{90°}≈W^ϕ = ^{0°}/W^ϕ = ^{90°}≈1.2. The fracture process zone is anisotropic in terms of size.
- The reason for a bigger FPZ along the foliation may be the preferred direction of micro-crack in such direction. Since the micro-cracks are oriented in the direction of crack growth, their activation and propagation can lead to a wider process zone. There is a negative correlation between the length and the width of
- the FPZ in both configurations. One can explain this trend by considering that the energy dissipated via micro-cracking is a material property, which is constant.

References F. Amann, V. Gischig, K. Evans, J. Doetsch, R. Jalali, B. Valley, et al., The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment, Solid Earth 9 (1) (2018) 115–137.

expension, Source 2016, F. Amann, B. Valley, and G. Molinari (2018), On the link between fracture toughness, strength and fracture process zone in anisotropic rocks, EFM. (in press), <u>https://doi.org/10.1016/i.engfnacmech.2018.08.017</u> M.D. Kuruppy, V. Obara, M.R. Aydulahi, K.P. Chong, T. Funatsu, ISR-Nauggested method for determining the mode I static fracture toughness using semi-circular bend specimen, Rock Mech Rock Eng 47 (1) (2014) 267–274.

Schwei Conféc Confec Confec

Supported by:

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation

On the variability of the seismic response during multiple decameter-scale hydraulic stimulations at the Grimsel Test Site

Linus Villiger*, Valentin Gischig**, Joseph Doetsch**, Hannes Krietsch**, Mohammadreza Jalali**, Nathan Dutler ***, Benoît Valley ***, Florian Amann**, Arnaud Mignan* & Stefan Wiemer*

Motivation

SUPPLY of ELECTRICITY

Predicting induced seismic activity or even occurring maximum magnitude events for hydraulic stimulation operations, e.g. used to increase transmissivity in reservoirs for deep geothermal systems (EGS), is an extremely challenging task. However, estimating at least induced large magnitude events is indispensable when it comes to the hazard assessment of possible new EGS sites. The main reason for the difficulty of the task is the limited knowledge of geological conditions as well as the in-situ stress state at depth. When it comes to hydraulic stimulation, one distinguishes between hydraulic fracturing (HF), where an induced fracture is propagated through the rock and hydraulic shearing (HS), where slip is induced on pre-existing fractures or faults. During stimulation, the two end-member mechanisms HF and HS occur in a complex interplay (see also talk by H.Krietsch on Friday, 11:45). The driving force, however, for HS on pre-existing structures are tectonic stresses, which hold a high potential for inducing large magnitude seismic events, if the fracture or fault is well oriented to the stress field.

In order to find strategies to mitigate large magnitude events and to better understand the seismo-hydro-mechanical coupled phenomena involved in hydraulic stimulation we performed six HS and five HF experiments in-situ at a decameter scale. In this contribution we focus on the six HS experiments. All experiments were performed in the framework of the In-situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site (GTS) (Amann et al., 2018).

Methods

The 6 hydraulic stimulation experiments were performed in a 20 x 20 x 20 m crystalline rock volume, in which the stress state and geology was exceptionally well characterized (Figure 1). The experiments targeted ductile shear zones (S3). These S3 shear zones contain a highly fractured zone in the East. A standardized injection protocol was used for the six HS experiments. In total 1'000 litres of water was injected in every HS experiment. Aside of the high-resolution deformation- and pressure monitoring networks, a highly sensitive acoustic emission monitoring network was installed (Figure 2).

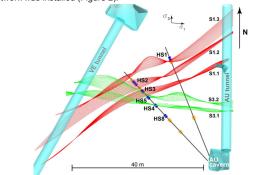
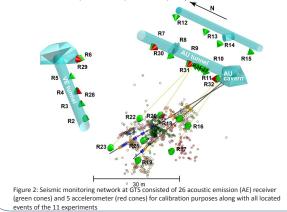
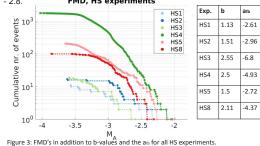



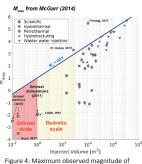
Figure 1: Experimental volume at GTS (top view): Injection boreholes (black lines), HF injection intervals (orange cylinders), HS injection intervals (blue cylinders), the shear zones along with the far field stress state (α 1: ~ 13.8 MPa, plunging to the East with 30 – 40°, α 3: ~ 8 MPa, subhorizontal North-South, $\alpha_2 = \pi$ 8.5 MPa, Krietsch et. al, 2018)



Results

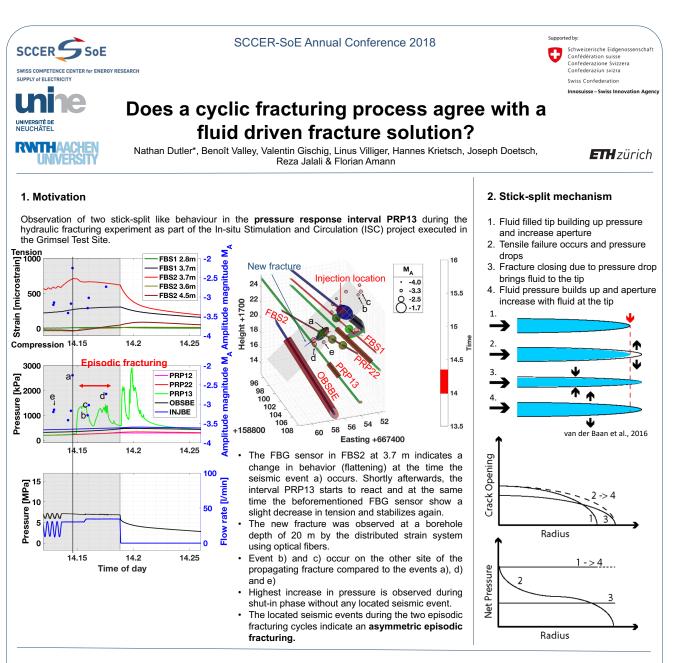
Table 1 shows an overview of the cumulative number of located events (orange bars) and transmissivity changes (blue bars) of the six HS experiments. The experiments are sorted according to the stimulated structure. Based on the far-field stress state, structures with S1 direction exhibit a larger slip tendency, compared to structures with S3 direction. Note also, that final transmissivities are in the same order of magnitude and generally controlled by S3 structures. Table 1: Overview located events vs. transmissivity change

In Figure 3, frequency magnitude distributions (FMD's) along with b- and attactuation feedback parameter, Mignan et al., 2017) of all HS experiments are shown. The amplitude magnitudes Ma presented are estimated from amplitudes recorded with the uncalibrated AE receiver (Figure 2) and adjusted to absolute magnitudes Mw estimated from AE receiver/accelerometer pairs installed on a tunnel level. Mc for all experiments was estimated at Ma - 2.8. FMD, HS experiments


Discussion

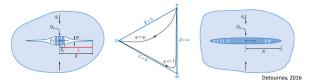
A highly variable seismic response (number of seismic events, ab- and b-values) is observed from six 1'000 I water injections into a small 8'000 m³ crystalline rock volume with variable geology following a standardized injection protocol. Furthermore, there is a tendency that an increased seismic response does not necessarily lead to a higher transmissivity increase. But, out of a far-field stress perspective: a higher slip tendency leads to a higher transmissivity increase.

Furthermore, we can observe that the maximum induced magnitude during the stimulation experiments at Grimsel (Figure 4) does not exceed McGarr's (2014) formulation of the upper bound of the seismic moment of an induced seismic event which is proportional to the total volume of injected fluid.


These outcomes lead to the following questions we would like to tackle in future work:

- What is causing these high variabilities? Is the geology (e.g., increased crack density) the driver for an increased seismic response?
- What can we learn from this scale? Are these findings relevant to the field scale?
- What does this high variability tell us for the predictability of induced seismicity?

ingure 4. wraximum observed magnitude of induced seismic events of different case studies along with McGarr's (2014) formulation of an upper bound of induced seismic moment.


Never n_{i} . Conclusion V_{i} , Granting A_{i} , Charles A_{i} , Marchi, R. M. M. Marchi, R. M. M. Marchi, R. M. Marchi, R. M. M. Marchi, R. M. M. Marchi, R. M. M. Marchi, R. M. M. Marchi, M. M. M. Marchi, M. M. M. Marchi, M. M. M. Marchi, M. M. Marchi, M. M. M. Marchi, M. Marthi, M. M. Marchi, M. M. Marchi, M. Marthi, M. M. Marchi, M. M. Marthi, M. M. Marthi, M. M. Marthi, M. M. Marthi, M. Marthi, M. Marthi, M. Marthi, M. Marthi, M. Marthi, M. Marthi, M. M. Marthi, M. Marthi, M. M. Marthi, M. Marthi, M. Marthi, M. Marthi, M. M. Marthi, M. Mart

3. Fluid driven fracture solution

The problem can be stated with the following governing equations: Elasticity equation

- Lubrication approximation of the non-linear Reynold's equation Boundary conditions on both moving fronts:
- Detournay, 2016
- Crack front: $w(\mathbf{x}_{c}, t) = 0, K_{I}(\mathbf{x}_{c}, t) = K_{Ic}, \mathbf{x}_{c} \in C_{c}(t)$ Fluid front: $p_f(\mathbf{x}_f, t) = 0$, $\mathbf{V}_f(\mathbf{x}_f) = \frac{q(\mathbf{x}_f)}{w(\mathbf{x}_f)}$, $\mathbf{x}_f \in C_f(t)$
- A scaling analysis revealed that the propagation of a penny-shaped fracture in an impermeable medium is characterised by two time-scales and can be presented by a parametric space OMK with three vertices representing a small-time (O), intermediate-time (M) and large-time (K) self-similar solution (Bunger & Detournay, 2007).

The energy dissipation mechanism corresponds either to the viscous fluid flow (M-vertex) or to the creation of new surfaces (K-vertex). new length scale for the fluid lag is:

$$\ell_{mk} = \frac{{K'}^{\circ}}{{E'}^4 {\mu'}^2 V^2} \approx 1.3 \text{ with } E' = \frac{E}{1 - V^2}, \ K' = (\frac{32}{\pi})^{1/2} K_{IC}, \ \mu' = 12\mu$$

using E = 30 GPa, v = 0.25, $K_{Ic} = 0.8$ MPa \sqrt{m} and $\mu = 1.2 * 10^{-3}$ Pa * s , V = 1m/s

*nathan.dutler@unine.ch

- Assuming the fracture radius is R = 4 m. This leads to a ratio $\frac{\ell_{mk}}{D} \approx 0.3$ which corresponds to a viscositydominated case.
 - If $K_I(\mathbf{x}_c, t) < K_{Ic}$ during episodic fracturing, the outer boundary does not move until the $K_I(\mathbf{x}_c, t) = K_{Ic}$ is fulfilled. This has a direct influence on the propagation velocity, which decreases when it is averaged over time. We can conclude that the best approximation for the episodic fracturing is a viscosity-dominated case.

Further considerations:

- An asymmetric fracturing behavior, where $K_I(\mathbf{x}_c, t) = K_{Ic}$ changes at the fracture boundary needs to be numerically modelled.
- Asymmetric fracturing is often observed, but what is the driving mechanism behind this effect?

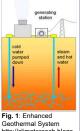
References

- Bunger, A. P., & Detournay, E. (2007). Early-time solution for a radial hydraulic fracture. *Journal of Engineering Mechanics-Asce*, 133(5), 534– 540. https://doi.org/Doi 10.1061/(Asce)0733-9399(2007)133:5(534) Detournay, E. (2016). Mechanics of Hydraulic Fractures. *Annual Review of Fluid Mechanics*, 48(1), 311–339. https://doi.org/10.1146/annurev-fluid-ueric-astronary-fluid-fractures. 010814-014736
- Van der Baan, M., Eaton, D. W., & Preisig, G. (2016). Stick-split mechanism for anthropogenic fluid-induced tensile rock failure. *Geology*, 44(7), 503–506. https://doi.org/10.1130/G37826.1

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation

Supported by:

Innosuisse – Swiss Innovation Agency


Investigation on Hydraulic Fracturing of Granite

A.de Saussure, L. Laloui¹, H. H. Einstein² ¹ Laboratory of Soil Mechanics LMS, Swiss Federal Institute of Technology of Lausanne EPFL, Switzerland ² Earth Resources Laboratory ERL, Massachussets Institute of Technology MIT, Cambridge, MA, USA

Motivation and Goals

Enhanced Geothermal Systems (EGS) constitute a large renewable source for electricity production. Hydraulic fracturing permits to increase the permeability of the rock in a naturally fractured environment

 \rightarrow Hydraulic stimulation in deep rock to reactivate existing fractures by injecting pressurized water Understand better the mechanisms of hydraulic

fracturing for EGS: induce shear failure in Barre http://climatereach.blogs pot.com/

Methods

Granite

The interaction between hydraulic fractures and pre-existing, nonpressurized flaws is investigated experimentally.

The experiments are performed on prismatic specimens of Barre Granite containing two pre-cut flaws under uniaxial or biaxial external load. Fluid is injected in the flaw until failure. Pressure and injected fluid volume are recorded. The crack development is captured with a highspeed camera and a high-resolution camera. Shearing is identified under different flaw geometries and loading conditions.

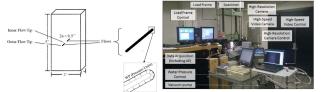
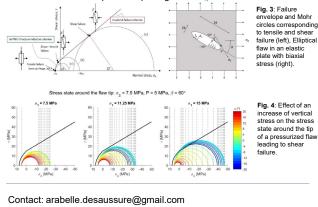



Fig. 2: Schematic of the pre-cut rock si cimen with a pressurized flaw (left). Experimental setup for draulic fracturing experiments (right)

Analytical investigation on hydrofracturing and hydroshearing

The type of failure (i.e. shear or tensile) is defined by the location of the intersection of the critical Mohr circle with the failure envelope

The evolution of the stress state around a pressurized opening is observed while the external stress and the internal pressure increase. The tangential stress is determined by an analytical solution (Pollard and Fletcher, 2005) and the normal stress corresponds to the internal fluid pressure. The Mohr circles represent the stress state at various locations around the tip of the opening.

Types of cracks and grain structure

Different crack types are observed: tensile inter-granular, tensile intragranular and shear inter-granular cracks. In addition, micro-cracks are observed in the hydroshearing experiments. They are punctual and aligned, linked to the development of a crack, or extended and delimited by grain boundaries.

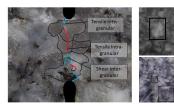


Fig. 5: Type of cracks and grain boundaries (left). White patching: extended zone (top right) and punctual (bottom right) in hydroshearing experiments.

From hydrofracturing to hydroshearing

Tensile failure is observed in the uniaxial experiments whereas shear failure is observed within the biaxial experiments: dilatancy, en echelon crack patterns and sliding. Hydroshearing occurs with a different test procedure corresponding to an increase of vertical stress and a constant internal pressure leading to the intersection of the Mohr circles with the linear part of the failure envelope (Fig. 4).

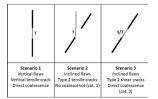


Fig. 6: Crack scenarios with crack types and coalescence categories observed in the uniaxial experiments. Biaxial experiments only show scenario 3.

Fig. 7: Frame (left) and sketch (right) of the crack pattern experiencing scenario 3 in a biaxia experiment showing hydroshearing .En echelon cracks, white patching and dilatancy.

Conclusion

The experiments have shown that:

Visible cracks propagation and crack patterns are highly influenced by the large grains in Barre Granite

Micro-cracks develop in the form of white areas in the shear fracture process zone

Hydroshearing is observed under a combination of biaxial external stress and hydraulic pressure.

The identification of the conditions leading to either hydrofracturing or hydroshearing will allow to understand better the difference between both mechanisms and its effect on induced seismicity through acoustic emissions measurements

References

[1] Morgan, S. P., Johnson, C. A., & Einstein, H. H. (2013). Cracking processes in Barre granite: fracture process zones and crack coalescence. *International journal of fracture*, *180*(2), 177-204.

[2] da Silva, B. G., & Einstein, H. (2018). Physical processes involved in the laboratory hydraulic fracturing of granite: Visual observations and interpretation. *Engineering Fracture Mechanics*, 191, 125-142.

[3] Pollard, D. D. & Fletcher R. C. (2005). Fundamental of structural geology. Cambridge University Press.

Advances in laboratory investigation of fluid-driven fractures

GeoEnergyLab

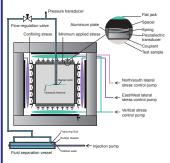
Thomas Blum and Brice Lecampion Geo-Energy Laboratory, EPFL

• better understand the physics of fluid-driven fracturing

• get an estimate of fracture size and shape during growth

1. Introduction

ÉCOLE POLYTECHNIOUE


FÉDÉRALE DE LAUSANNE

Wide range of applications: oil and gas extraction

- Need for models to:
 - efficiently fracture the targeted formation
- geothermal energy recovery
- CO2 sequestration

2. Laboratory setup

- cubic geologic specimen, 250 x 250 x 250 mm
- reaction frame: confining stresses of up to 25 MPa along each axis
- independently controlled pairs of flat-jacks to apply confining stresses
- high-pressure injection pump: flow rate from 1 μ L to 90 mL/s
- notch at the bottom of the wellbore for localized initiation
- experiment duration on the order of minutes to a few hours

Left: schematic of the experimental setup, Right: top-view photo inside the reaction frame, with flat-jacks and platen on the sides of the specimen and platen with piezo transducers on the top.

3. Acoustic monitoring

- 64 piezoelectric transducer arranged in 32 sources and 32 receivers
- mix of compression and shear in order to use both P- and S-waves
- sequential excitation of all 32 sources every few seconds for snapshots of the acoustic properties during the fracture propagation

Schematic of the transducer layout and different arrival modes.

- \mathbf{R} reflected signal: fluid content of the fracture
- T transmitted signal: fracture thickness
- D diffracted signal: position of the fracture tip.

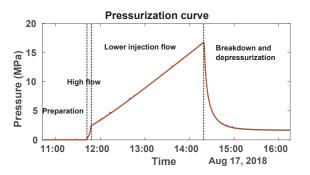
Transmission coefficient through a planar fluid layer of thickness **h**:

$$T(\omega, h) = \frac{(1 - r_{ff}^2) \exp(i\alpha)}{(1 - r_{ff}^2) \exp(2i\alpha)}$$
(1)

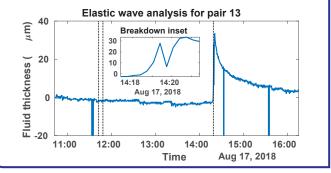
where ω the signal frequency; $r_{ff} = \frac{z_r+1}{z_r-1}$, $z_r = \frac{\rho_f c_f}{\rho_s c_s}$; ρ_s, ρ_f are the densities of the solid and fracturing fluid, respectively; and c_s, c_f the P-wave velocities of the solid and fracturing fluid, respectively.

Scaled laboratory experiments:

- allow to validate theoretical predictions
- provide datasets under controlled conditions
- include physical limitations

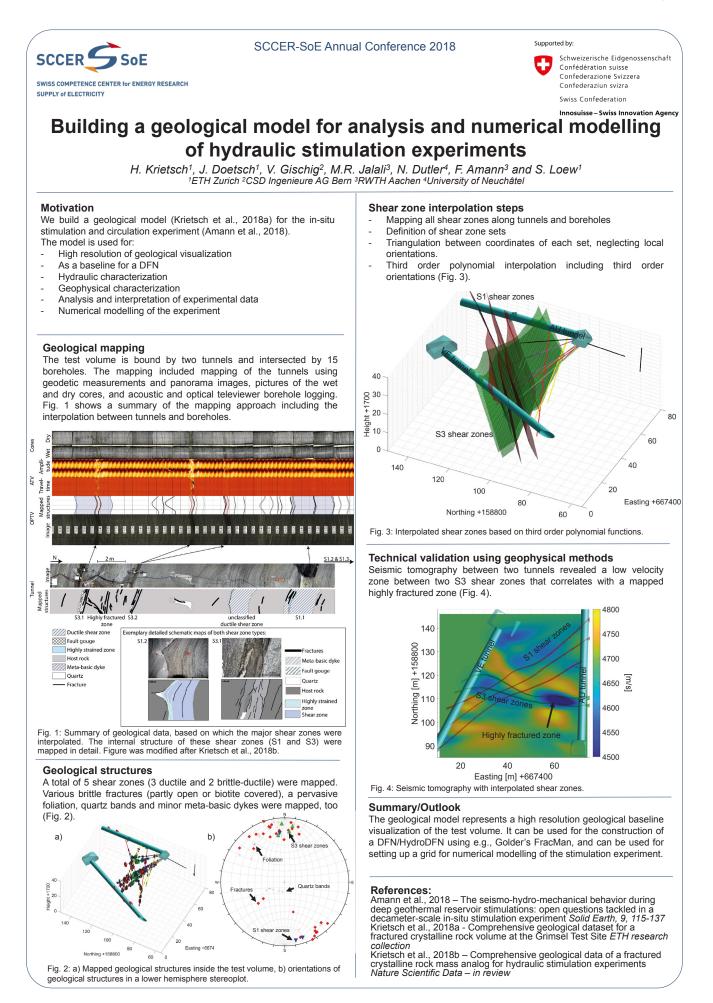

4. Work progress

- Investigations of Carmen slate: highly bedded anisotropic material, relevant for fracture propagation normal to the bedding plane. Currently issues with notching and fracture initiation.
- Fractures in Carrara marble: propagation in fine-grained material, comparison between toughness- and viscosity-dominated regimes of propagation.



5. Injection in Carrara marble

- No vertical confining stress
- 2 MPa horizontal stresses
- Injection fluid: glycerol, $\eta = 0.6$ Pa.s, flow = 0.02 mL/min



Analysis of transmission measured with one pair of transducers, placed opposite from one another:

6. Conclusions

Extensive analysis of elastic wave data to follow soon for a diverse set of geologic specimens and experimental conditions.

