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Task Title 

Modeling Facility: Mathematical Modeling and Numerical Simulation in Hydro- and Geo-

Sciences 

 

Research Partners 

École polytechnique fédérale de Lausanne (EPFL), Swiss Federal Institute of Technology in 
Zurich (ETHZ), Lucerne University of Applied Sciences and Arts (HSLU), University of 
Lausanne, Goethe Center for Scientific Computing (G-CSC) of the Goethe University 
Frankfurt, Karlsruhe Institute of Technology (KIT), University of Siegen, University of Leeds, 
RWTH Aachen University 

 

Current Projects (presented on the following pages) 

Discretization and Multigrid Methods for Modeling permeability and stimulation for deep 
heat mining 
C. v. Planta, R. Alessandro, T. Driesner, R. Krause 

A new software for modeling seismic velocity dispersion and attenuation in realistically 
fractured media 

M. Favino, J. Hunziker, E. Caspari, B. Quintal, K. Holliger, R. Krause 

 

Task Objectives 

- The modeling facility in Task 4.3 provides state of the art knowledge and techniques from 

numerical analysis, computational science, HPC, and scientific software engineering. In 

cooperation with partners from other tasks, the modeling facility aims at improving existing 

or providing new simulation tools for hydro and geo science, which combine robustness 

and efficiency with HPC capabilities. 

 

Interaction Between the Partners – Synthesis 

- Task 4.3 is interacting with the tasks of work package 1 and 3. Interaction in the different 

projects is mostly connected to questions in numeric / scientific computing or on the 

knowledge exchange between geo / hydro science and the modeling facility. 

 

Highlights 2016 

- PhD Product version of our transfer library Moonolith for variational transfer between 

arbitrarily distributed meshes 

- Semi-geometric multigrid for vracture problems 

- Good scaling version of software libraries (UTOPIA, PASSO and moonolith) for the 

numerical simulation of coupled multiphysics problems 

  



Numerical simulations play a key role for a better understanding of the 
hydraulic stimulation mechanisms. Numerically these simulations 
relate to frictional contact problems. Using our experience in 
simulating this problem class we aim to improve accuracy, robustness 
and speed of hydraulic stimulation simulations. 

Our strategy is based on bringing the efficiency of the well-known 
Multigrid algorithm from linear to non-linear problems using L2 -  
projections based on biorthogonal basis elements, non-linear block 
Gauss-seidel smoother and truncated basis functions.

Nonlinear Multigrid Methods 
for 

Modeling permeability and stimulation 
for deep heat mining

Alena Kopanicakova°, Lulu Liu°, Roger Müller°, Cyrill Planta°,Thomas Driesner* and Rolf Krause° 
°Università della Svizzera italiana, *ETH Zurich

Outlook

Multigrid Algorithm

Introduction
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The multigrid algorithm is an iterative solver which uses several 
representations of the problem from fine to coarse. Simply put, every 
level is suitable for a specific wavelength of the solution and multigrid 
makes use of that by projecting the non-resolved part of the solution to 
a suitable level. It is one of the most efficient linear solver for elliptic 
problems such as linear elasticity.

Implementation

We use MOOSE for the finite element discretization. Our Framework, the 
parallel subspace solver and optimization library “PASSO” uses the 
PETSC SNES and libMesh to interface to MOOSE on on side. On the 
other side PASSO interfaces to UTOPIA which serves as wrapper for  
linear algebra backends suited for CPUs and GPUs.

Results
We have conducted scaling experiments for the Newton method which 
uses a 4 level, V-cycle variant of our Multigrid with 3 pre- and 
postsmoothing steps for the computation of the step. The testproblem is 
a phasefield based fracture model included in MOOSE with 1.3 million 
degrees of freedom.

The results show that the norm of the error rk  decrease by 1-2 orders of 
magnitude as is expected from Multigrid. Also scaling experiments up to 
80 processors show good strong scaling.

We will extend the Multigrid-Solver to a true nonlinear solver for contact 
problems by introducing truncated basis on the coarse grid. The solver 
will then be extended to solve multibody contact problems using a 
surface-to-surface variant of our L2 - Projection.

References
[1] Krause, Zulian SIAM 2016 
[2] Dickopf, Krause Int. J. Numer. Meth. Engng 2008; 00:1–2

Figure: Phasefield testproblem 
with one crack going through the 
lower right corner.

Figure: Example of of truncated basis in 1D for a 
contact problem. The contribution of the nodes in 
contact is effectively shut off on the coarse grid.

Multigrid Algorithm MG (y , k , y0):

k : level, y : current value, y0: starting value, GS: Gauss-Seidel step

1: Presmoothing: xn+1 = xn + GS(l , b � A ⇤ xn)
2: Project residual from level k to k � 1: r̃n+1 = P

k�1
k ⇤ (b � A ⇤ xn+1)

3: Recursive call to MG : ũ = MG (r̃n+1, k � 1, 0)
4: Interpolate solution back from level k � 1 to k : u = I

k
k�1 ⇤ ũ

5: Postsmoothing: xn+2 = xn+1 + GS(l , b � A ⇤ (xn+1 + u))
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L2- Projection

The efficient computation of the interpolation operators between the 
different grids is crucial. We use L2 projections which define the 
Projection Pkk+1 using the weak form (or L2-norm):
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Using the finite element discretization one gets:

Thus the product of basis functions of the spaces Vk  and Vk-1 defines 
the matrices D, B and at last the discrete form T of the projection 
Operator Pkk+1:
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Biorthogonal basis functions

Since solving a linear system to obtain w is in general too expensive, 
we replace the original approximation space with one that is spanned 
by a family of biorthogonal functions:

Thus D above becomes a diagonal matrix and is easily invertible.
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PASSO

nonlinear Gauss-Seidel
nonlinear monotone multigrid

Preconditioners and Solvers

trust region methods

Constraints

Subspaces: Xk , Sj , Vi ,K,Dl
Interpolations, restrictions,
projections

Interfaces

Energy J (global and local)
Gradient ∇J (global and local)
Hessian ∇2J (global and local)
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A new software for modeling seismic velocity
dispersion and attenuation in realistically fractured media
Marco Favino°, Jürg Hunziker*, Eva Caspari*, Beatriz Quintal*, Klaus Holliger* and Rolf Krause°
°Università della Svizzera italiana, *University of Lausanne

Introduction
For geothermal and hydrocarbon exploration, nuclear waste disposal 
and CO2 storage, knowledge of the fractures in the subsurface is of great 
relevance. Unfortunately, direct imaging of fractures with seismic 
methods is not possible, because the seismic wavelength is much larger 
than the fracture thickness. Indirect imaging is, however, possible, since 
seismic waves experience velocity dispersion and attenuation in 
fractured media due to wave-induced fluid flow (WIFF).

Method
WIFF in fractured media is studied using numerical upscaling 
experiments as described by the poster by Hunziker et al. (Task 1.2). 
Because of the fine meshes needed to resolve the fractures, such 
numerical experiments have been so far limited to rather simple 
models. To overcome this limitation, we have developed a new code 
called Parrot inside the finite element framework MOOSE. This software 
allows us to model realistic two-dimensional fractured rocks employing 
a fundamentally different approach: fractures are represented as 
discontinuous changes in the material properties but not explicitly 
resolved by the mesh. In this way, complex fracture networks can be 
readily considered without any computationally expensive remeshing. 
This strategy is coupled with an adaptive mesh refinement technique, 
which allows to refine the mesh at the fracture locations and hence to 
capture the complicated physics prevailing at the boundaries between 
the fractures and their embedding host rock. Starting from a single 
coarse mesh, this thus allows for a fast and "hands-off" numerical 
simulation of fracture networks of realistic complexity.

Validation: two fractures
We tested our code on a simple model of two intersecting fractures in 
order to compare it with the commercial software Comsol 
Multiphysics.

Results: realistic fracture network
We employed software Parrot to determine the attenuation of seismic 
waves on a sample that features a realistic fracture network. 

Conclusions

SCCER-SoE Annual Conference 2016
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We observe a good agreement with regard to the attenuation computed 
by the two softwares. The small differences are mainly due to different 
meshes: unstructured triangular mesh following the geometry in Comsol 
and refined structured rectangular mesh independent of the geometry in 
Parrot.
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As in the case with only two fractures, the frequency dependent 
attenuation for the realistic fracture network contains two peaks. The 
low-frequency peak is due to WIFF between the fractures and the 
background, while the high-frequency peak is caused by WIFF between 
connected fractures. Relative to the amount of fractures, there are less 
connections between fractures in the second example. Therefore, the 
high-frequency attenuation peak is much lower in amplitude than the 
low-frequency attenuation peak. 

Outlook
In the future, we shall use this new code to investigate WIFF in 
relation to connectivity and effective storativity of realistic fracture 
network, and we plan to extend it for three-dimensional 
simulations.

Our software is able to perform simulations of seismic attenuation and 
velocity dispersion in realistic fracture networks. Thanks to an adaptive 
mesh refinement technique, no human interaction is needed to describe 
the fracture network.


