Energy hub modelllng and Aioptl’mlsatlon

Dr. Kristina Orehounig

Chair of Building Physics
ETH Zirich, orehounig@arch.ethz.ch

Kristina Orehounig | 10/31/2017 | 1




Structure of the presentation

e Multi energy hubs
e Modelling of energy hubs
e Application example



Goals of the energy strategy
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Multi-Energy hub systems

From buildings to neighborhoods ...
How should a decentralized energy system be designed and operated?
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Multi-Energy hub systems ... why optimisation

From buildings to neighborhoods ...
How should a decentralized energy system be designed and operated?

<

1) Building scale

< How can interactions between the
- different levels be coordinated?

« Where shall the energy be produced
P and stored, and how much of it?
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Complexity of integration

« Temporal and spatial variation in electricity, heating, and
cooling demands

IIIII

« Intermittency of certain types of renewable technologies (e.g.
PV and wind turbines)
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Complexity of integration

Peak time rate
Day time rate  0.11 $/kWh
Night time rate 0-98 $"'kWh 2

« Variable fuel pricing  sossawn |
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(a) Electricity tariff structure (Commercial TOU agreement)

U Volume rate: 0.45 $/m3 i

- Base rate=fixed charge (725.75 $/month) +
flow rate (7.51 $/m7)+
maximum demand season charge (0.01 $/m ?) =
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(b) City gas tariff structure (Total energy system agreement)

« Temporal variability in carbon intensity of the grid electricity

oS Different technologies with different fuels
= /// AT DN \ and diﬁerfent efficiencies operating at
e/ | S—-— v\ different times.
Q\J/// o \! Carbon intensity of Swiss electricity grid?
e «  Summer vs. winter?
o il ——— « Day vs. night?

Howr



Modelling of Energy hubs



Modelling of energy hubs

Open system

Inputs Qutputs
e.g. Grid e.g.
electricity, ———> Electricity,
solar Heat,
radiation, Domestic
natural gas, Hot Water,
etc. etc.

What happens in the black box?

Load



INPUTS

What is an energy hub?

A clearly delineated system to convert and store multiple
energy streams

How many degrees of freedom are there in this system?

Grid Electricity

?

PV O * the operational schedule

* the choice of generation
[ technologies within the energy system
and their sizes (system design)
» the location of the generation units
>[ Boile and the structure of the distribution
network (energy distribution)

Gas

:



What is an energy hub model?

A mathematical representation of an energy hub that enables optimization

Variables: Elements for which you want to identify an optimal value
Constants: Elements for which you already know the value
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Energy Hub formulation - typical constraints

Objective function

min f = Z G x Li(t)

Load balance constraint

Lk{ ) el. X Pm )-|- 4&!5@1:{15[) Qch(

Storage continuity constraint

E,(t+1) = A2 E,(t) + A%Qeh(t) — Q1)

Capacity constraints
Ii(t) <I*(t), 0 < Pu(t) < P, En(t) < EJ™

m

Storage charge/discharge constraints
Qh(t) < Md, (1), Q25(t) < M (1-d,(t))

Pa.rt—load constraints
PR by (t) < Pr(t), Pa(t) < Mby(t)

Sum of energy outputs from technologies must be
sufficient to provide for demand at the given timestep

Storage inputs and outputs determine the state of
charge at the next timestep.

Conversion technologies cannot produce more than
their capacities. Storages must not be filled more than
their capacities.

Storages can only be charged/discharged at a
maximum rate.

Conversion technologies cannot produce below a
given power level.
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Application



Modelling of Energy Hubs
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Integration of Decentralized energy systems

The village of Zernez

» Energy sustainable
community

» Remove building related
CO, emissions
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Integration of Building systems

1. Building systems

INPUT OUTPUT

» Transformation
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Heat pumps
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2. Building envelope
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3. Multi-criteria Analysis
A

Cost optimum

Possible solutions

Pareto Front

Green house gas emission
optimum

COSTS
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Integration of Building systems

3. Multi-criteria Analysis
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Design of the energy system

$1 Decentralized sources S2 Centralized sources S3 District heating network 54 Small network
Decentralized technologies Decentralized technologies Decentralized technologies Decentralized technologies
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Design of the energy system
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Design of the energy system
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Summary and Outlook

e Quick introduction into energy hub modelling

e Application examples at building and
neighborhood scale

e Design your own energy hub
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Exercise (1) oo o2 @EmMpa

buildings & districts d Technology

Each person has a card representing a type of entity in a district
energy system.

4 types of cards:

1. Energy inputs: You represent an external energy input to a district energy
system

2. Energy demands: You represent an energy demand internal to a district
energy system

3. Energy conversion technologies: You are a distributed energy
conversion technology. You convert one form of energy into another.

4. Energy storage technologies: You are an energy storage technology.
You store a specific type of energy.

Look at your card. What type of card do you have? What are your inputs and
outputs?
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Exercise (2) oo s @EMpA

buildings & districts d Technology

Instructions:

5 minutes: Look for partners who can supply your inputs and use your outputs.
Try to make a complete chain (district energy system) from inputs to demands.

Rules:
1. Each chain must begin with inputs and end with demands.
2. Each chain must provide for (at least) the following demands:

» electricity
* space heating
« domestic hot water

3. Each chain must include 3 or more conversion/storage technologies.
4. If you use an intermittent renewable conversion technology, you must

have a corresponding storage or external energy input.
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Exercise (3) ~CPO-D @Empa

sccer | future energy efficient
B . Materials St e and Technology
bUIld\ﬂgS & d\SU’ICtS aterials Saence and lechnology

Questions:
1. How many technologies are in your system?
2. How sustainable (carbon intensive) is your system?

3. How energy autonomous is your system?
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INPUTS

Grid connection
Output: Electricity

District heating connection
Output: Heat

Gas network connection
Output: Natural gas

Oil delivery:
Output: Oil

Sun
Output: Solar radiation

Wind
Output: Wind

River water
Output: Moving water

Biomass
Output: Biomass

DEMANDS

Electricity demand
Required input: Electricity

Space heating demand
Required input: Heat

Hot water demand
Required input: Heat

Cooling demand

Required input: Chilled water

CONVERSION TECHNOLOGIES

Wind turbine:
Input: Wind
Output: Electricity

Small hydro plant
Input: Moving water
Output: Electricity

Solar photovoltaic system
Input: Solar radiation
Output: Electricity

Solar thermal system
Input: Solar radiation
Output: Heat

Gas boiler
Input: Gas
Output: Heat

Heat pump
Input: Electricity
Output: Heat

Electric boiler
Input: Electricity
Output: Heat

Biomass boiler
Input: Biomass
Output: Heat

Chiller
Input: Electricity
Output: Chilled water

CONVERSION TECHNOLOGIES

Absorption chiller
Input: Heat
Output: Chilled water

Combined heat-and-power (CHP) unit
Input: Gas
Output: Electricity, Heat

Fuel cell
Input: Hydrogen
Output: Electricity

Electrolyzer

Input: Electricity
Output: Hydrogen

STORAGE TECHNOLOGIES

Borehole heat storage
Stored energy: Heat

Hot water tank
Stored energy: Heat

Hydrogen tank
Stored energy: Hydrogen

Ice storage
Stored energy: Chilled water

Battery
Stored energy: Electricity



Multi-Energy Hubs oo e i~ @ EMPpa

o i 5 ial
buildings & districts Materials Science and Technolagy
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H, storage
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i /[ Chiled water |
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Chilled water \
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