

The importance of understanding coupled processes in geothermal reservoirs

Thomas Driesner
October 19, 2016

In cooperation with the CTI

Swiss Confederation

Commission for Technology and Innovation CTI

Natural hydrothermal systems

Subaerial systems

- On land, various types
- Mostly in rifts or at active continental margins
- Meteoric water

Submarine systems

- At ocean spreading centers
- Circulating seawater
- "Black smokers", unusual bitoa

Magmatic-hydrothermal systems

- Volcanic centers
- Magmatic & meteoric fluids
- Sites of major ore deposition

Facets of hydrothermal systems

- convey >25% of surface heat flux
- origin of (the) major resources of Cu, Au, Mo, Pb, Zn, Sn, Ag, ...
- major control of ocean chemistry
- geothermal resources ...

Subaerial, high-enthalpy hydro-/geothermal systems

- meteoric water
- magmatic heat
- often subsurface boiling
- "high enthalpy" geothermal resources
- "low sulphidation" gold deposits
- "epithermal" base metal deposits

First order physics ...

... and second order variations of the theme (site-specific)

Thermal structure of high-enthalpy systems

- Temperature with depth follows a curved profile – any idea why?
- However, some other systems follow that curve only to certain depth, then stay nearly isothermal to depth. Why?

Take-home message 1: Understand SCCER SOE fluid properties and fluid phase diagrams

Numerical simulation of high-enthalpy systems

(Hayba&Ingebritsen (1997) Journal of Geophysical Research 112, B12235-12252) (Driesner&Geiger (2007), Reviews in Mineralogy and Geochemistry 65, 187-212)

Assumptions:

- multiphase porous media flow
- thermal equilibrium between rock and fluid etc.
- full water properties to magmatic conditions (crucial!)
- T-dependent permeability (crucial!)
- system-scale permeability structure is main geological factor: explore its influence by simulation

Life cycle of high enthalpy systems

(Scott et al., Geothermics, in review)

- Early stage: plume emerges
- Main stage: fully developed plume, maximum energy
- Waning stage: cooling from below (would you have expected that?

Permeability + fluid properties determine thermal structure

(Hayba&Ingebritsen (1997) Journal of Geophysical Research 112, B12235-12252) (Driesner&Geiger (2007), Reviews in Mineralogy and Geochemistry 65, 187-212)

Take-home message #1: Process couplings rule system behavior

- To analyze system behavior, you need to understand
 - Fluid property variations with T and P
 - Coupling between fluid properties and heat transport, namely competing time and length scales of advective vs. conductive heat transport
 - The role of coupling between temperature, rock rheology and permeability

Insights gained:

- ~10⁻¹⁶ m² permeability marks the transition from conduction- to convectiondominated heat transfer
- ~10⁻¹⁵ m² produces highest enthalpies
- Higher permeabilities: more efficient heat transfer but much lower temperatures

More on temperature-dependent rock properties

Iceland 2009: First time drilled supercritical geothermal reservoir But at totally unexpected conditions
What is that thing?

The videos shown were courtesy of the Iceland Deep Drilling Project http://iddp.is/2011/09/03/iddp-1-flow-test-continues/

So: what is "supercritical"?

SCCER SOE

"Supercritical" is a fuzzy term:

- "Beyond" the critical point, ok, but no physicsbased rigorous definition because there are no discrete boundaries
- Useful fluid characteristics in geothermal context:

$$T > T_{crit} (374 °C), h > h_{crit} (2.1 MJ/kg)$$

- Plus, to make it a supercritical resource:
 k > 10⁻¹⁶ m²
- What would you guess are the parameters that govern formation of supercritical resources?

Geology for supercritical resources

Scott et al., Nature Comm. 2015

Conclusions supercritical resources

IDDP-1 possibly not unusual at all: Supercritical resources may be a part of many high-enthalpy systems (namely basaltic host rocks)

Key controls:

- Brittle-ductile transition temperature (depends on host rock types, strain rates etc.)
- System-scale permeability
- Depth of intrusion

Revised understanding of thermal structure of high-enthalpy systems

Drilling close to magma may be key for exploration

16

Role of other fluid properties: the example of black smoker systems

3D structure of MOR hydrothermal convection

(Coumou et al. (2008) Science 321, 1825-1828)

18

Warm and narrow recharge: why?

fluid property variations increase hydraulic conductivity: self-organizing low viscosity channels optimize heat transfer first order effect, emergent behavior, a priori not foreseen

Simulation vs. observations

Coumou PhD thesis 2008

Simulation results:

Magnetic anomalies on seafloor:

"..near vertical, narrow pipe-like source regions.."

Take-home message #3: Don't simplify if not justified!

Perspectives for fractured geothermal systems

- Heat transfer in fractured rock masses
- Permeability of fractured rock masses and flow organization in fractured rock masses
- Thermo-hydro-mechanical-chemical controls on permeability

Heat transfer in fractured rock masses

more efficient heat extraction in "damage zones"

Single fracture (bad!):

 in worst case, hot water pushed through, no significant heating, cold at commercial rates

Fracture zone (better!):

- fracture flow slower
- more surface area: better heat extraction
- longer production times at higher temperature

BUT:

– what are the systematics for real geometries?

Only the simplest cases have been analyzed rigorously

- Simplified geometries
- Ideal properties
- Is this a best case or worst case scenario?

Li et al., Geothermics (in press)

Channeling in fracture networks

Watanabe, 2009

- Heterogeneous aperture leads to channeling on individual fractures
- Channeling strongly pronounced in 3D networks
- Effect on heat extraction?
- Can we engineer measures to counteract this?
- Or is this (partly) selfregulating?

Figure 3. Flow field within the sparse DIST network shown in Figure 1 (top middle), (left) when heterogeneities of the fracture local apertures are taken into account ($c_{\text{frac}} = 1$) and (right) when fractures are modeled as parallel plates. Scale on the right displays the logarithm of the mean flow value within a mesh cell.

2012

However ...

First simulation results by James Patterson:

- Thermal communication between hydraulically unconnected fractures can lead to self-organization of patterns of convective flow
- How much will this also happen
 - During production?
 - In networks with heterogeneous aperture distribution?
 - In interactions with mechanical effects?

Thermo-hydro-mechanical-chemical controls on permeability

Up to you ...

... and btw: Friday