

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

SCCER international collaboration - the example of supercritical (and other) geothermal resources in Iceland

Thomas Driesner, ETHZ

In cooperation with the CTI

Energy

Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft Confederation suisse Confederazione Swazera Confederazion sviara

Swiss Confederation

Commission for Technology and Innovation CTI

Collaboration 2013-2018+

- IPGT as umbrella was instrumental
- COTHERM (SNF-Sinergia) 3 PhD, 1 Postdoc
- Direct interaction with Icelandic DRG (Deep Roots of Geothermal Systems), ISOR, University of Iceland, ...
- Direct interaction with FP7 IMAGE (BfE-sponsored field campaign, 2 MSc, SE-Iceland + ISOR + Italian PhD)
- Direct interaction with Iceland Deep Drilling Project, IDDP (workshops, preparatory reports, ...), now direct involvement in preparation of IDDP-3

Iceland Geothermal

- >50% of primary energy production (heat and power) geothermal!
- 5 geothermal power stations, ca. 650 MW_{el} total
- Reykjavik district heating completely geothermal (low enthalpy resources plus hot water pumped 30+ km from power stations)
- Plenty of low-/medium-enthalpy resources
- Highly innovative
 - Iceland Deep Drilling Project for supercritical resources
 - Innovative use of waste-water & heat: Blue Lagoon, high-tech yeast, ...
 - Very active and successful in acquiring EU grants

Background: high-enthalpy resources

- Driven by magmatic heat, boiling
- Heat transfer to geothermal system controlled by
 - Host rock permeability
 - Temperature dependence of permeability
- Typically exploited at 1 2.x km depth and 250 to 300°C

modified from Hedenquist, 1992

Background: high-enthalpy resources

- Driven by magmatic heat, boiling
- Heat transfer to geothermal system controlled by
 - Host rock permeability
 - Temperature dependence of permeability
- Typically exploited at 1 2.x km depth and 250 to 300°C
- Hottest current research problem are the "deep roots":
 - Hotter resource, can it be utilized and how?
 - IDDP: Iceland Deep Drilling Project

Background: high-enthalpy resources

- Driven by magmatic heat, boiling
- Heat transfer to geothermal system controlled by
 - Host rock permeability
 - Temperature dependence of permeability
- Typically exploited at 1 2.x km depth and 250 to 300°C
- Hottest current research problem are the "deep roots":
 - Hotter resource, can it be utilized and how?
 - IDDP: Iceland Deep Drilling Project
- How has industry looked at this before?
- So: what's the TRL?

Project IDDP-1: Krafla, N-Iceland

(Landsvirkjun Power Company)

- Hit magma at 2 km depth
- Well head: 450°C, 14 MPa
- Flow tests showed that up to 35 MW_{el} possible from a single well
- However: massive technical problems (scaling, corrosion, thermo-mechanical instability of casing etc.)
- Science involvement mostly AFTER problems encountered ...
- Unique learnings and insights but well now abandoned

IDDP-2: Reykjanes, SW-Iceland

(HS Orka Power Company)

- Well drilled to 4.6 km
- Geothermal fluid = seawater
- Total fluid loss below ca. 3.6 km
- Casing problem at about 3.4 km
- 2019: well testing etc.
- We were approached by Equinor (formerly Statoil) to develop scenarios to be tested in the characterization phase
- Within few months, this sparked already two significant, industrydriven proposals (H2020 and Norwegian research council)

IDDP-2: Our Predictions vs. Reality

 COTHERM PhD work in 2016 BEFORE drilling predicts +/- exactly the best estimates obtained AFTER drilling (i.e., in 2017/18)

Why are the results interesting for industry?

- Developing adequate exploration models and strategies
- Targeting/vectoring:
 - best location for well
- Scenario development:
 - How to test the well for characterizing the resource?
 - How to operate the deep well: production or injection?

Non-saline systems: enthalpy distribution is vector to supercritical resource!

IDDP-3: Hellisheidi-Hengill, S-Iceland

(Reykjavik Energy)

- To be drilled 2020/21
- Try to avoid errors made in IDDP-1 and IDDP-2
 - Pilot hole to 3.5 km planned
 - Involve science early on for developing scenarios
- Try to locate best well site
- Same site that SED works on: synergies!
- Plus: Climeworks direct capture + sequestration ...

Interest of Industry in Collaboration

- Make fewer challenging/negative experiences than IDDP-1/2
 - Best well-siting
 - Best characterization strategy
 - Best operation approach
 - Best choice of equipment/technology
- Realized that current workflows and tools don't allow rigorous assessment of their problems ...
- Cost/benefit of the exercise ...
 - 10⁴ 10⁵ EUR to improve a 10⁷ EUR project are we really talking TRL?

What sparked the interest?

- COTHERM/IPGT/SCCER
- Previous work advertised repeatedly on personal meetings in Iceland, presentation and language tuned to have impact
- Personal connections (outcome of interaction during BfE-sponsored workshop at Castasegna, 2012; 18kCHF, 15 people from CH, US, NZ, ICE, AUS) from IPGT countries, shaped US benchmarking initiative, ETH: published high-enthalpy benchmarking standard ...). This was a bargain!
- Scientific messages need time and repetition to trickle in PLUS the curiosity and reception of industry but:
- Why does it work so well on an IPGT level and supposedly not in CH? Is this really a TRL question? Or one of trust in people and their expertise and commitment and will to interact?

About the time aspect ...

3 first-of-a-kind papers out of COTHERM EOS H2O-NaCL **CVFEM ready** 3 fundamental papers out of NFP70 publications, strong recognition papers SCCER postdoc n Econ Geol community 7 more, "first of a kind" 5 more publications, in MOR community strong recognition 2nd Science paper, 1st Science paper, first application **Technical and** papers

2000

2004

2008

2012

2016 Icelandic Industry shows interest ...

Initial code design (S.Matthai) for ore deposit applications 1st PhD: basic **FV-FE** method 2nd PhD: application

to MOR

Interaction with Iceland ...

CCES/CCEM/SNF/ETH: 2 Postdocs, 2 PhD

SNF-Sinergia COTHERM (1 PhD)

SCCER/NFP70/H2020 ... 2 Postdocs, 2 PhD

Successful interaction is a matter of time and communication

- Academics do not naturally/automatically know the industrial questions, workflows and approaches (e.g. "flow assurance"), i.e., two-way communication is key!
- Have precise questions, then we can most probably provide value-adding advice or answers (applies also within SCCER ...)!
- If we can't provide the answer yet, we can do it within a limited number of years!

Beyond Supercritical: HEATSTORE

- Reykjavik heating is +/- 100% geothermal (=2/3 of population)
- Mixed low-/medium-enthalpy resources (with smelly H₂S) and piped (>30 km) hot water from a power station
- 2017/18: cold winter followed by cold summer plus massive increase in tourism (one new hotel permit application per week) -> resource reaching its limit
- Seasonal heat storage as possible way to mitigate this problem (power station runs baseload all year)
- Collaboration with Reykjavik Energy in HEATSTORE