

Energy Turnaround National Research Programme

Sediment replenishment at the Sarine river

S. Stähly*, MJ. Franca, CT. Robinson, AJ. Schleiss

J. Durand-Gasselin, A. Maître, P. Bourqui, E. Battisacco, D. Tonolla, M. Doering

*Corresponding author: PhD candidate, EPFL LCH, GC F1 485, Station 18, CH-1015 Lausanne E: <u>severin.staehly@epfl.ch</u>, T: +41 21 693 2851

SCCER-SoE annual conference

Horw, 14 September 2018

Content

- 1_ Introduction to the topic
- 2_Methodology
- 3_ Results

Sarine river, Fribourg

- Bed-rock alluvial meandering river in a gorge
- Floodplain classified as **national important**
- Dam construction in Rossens in 1948
- Hydrology highly impacted
- Sediment deficit \rightarrow incision

Rossens Dam, Lac de la Gruyère

- Dam: 83 m high, 320 m long (since 1948)
- Reservoir: 200 mio m3 (13.5 km long)

Hydrology

Hydrology in Fribourg (flood statistics)

Hydrology in Rossens (past 12 months)

www.swissrivers.ch, 11.09.18

SCCER-SoE Annual Conference Horw, 14 September 2018

Change in time

www.map.geo.admin.ch, 11.09.18

www.map.geo.admin.ch, 11.09.18

Content

- 1_ Introduction to the topic
- 2_Methodology
- 3_Results

Restoration in the Sarine river

_ Loss of **river dynamics** due to **monotonous discharge and lack of sediment** supply since the construction of the dam in 1948.

_ Authorities want to act: **articifially triggered flood** combined with **sediment replenishment**.

____Special configuration of sediment replenishment for steep rivers. Assembly of **four deposits** optimized in laboratory experiments. Sediment is expected to deposit in clusters (Battisacco et al., 2016)

_ 489 Stones were equipped with **RFID PIT tags** in sediment of two diameters: d_m (57 mm) and d_{90} (113 mm) to see the reach of influence of the sediment replenishment

Restoration in the Sarine river More information → Poster (in german)

Analysis of the change in habitat diversity with HMID

Determine the Hydromorphological Index of Diversity (HMID) before and after the event

(HMID, Gostner et al., 2013)

$$HMID_{site} = \left(1 + \frac{\sigma_{v}}{\mu_{v}}\right)^{2} * \left(1 + \frac{\sigma_{h}}{\mu_{h}}\right)^{2}$$

 σ_v = standard deviation of the flow velocity [m/s] μ_v = mean value of the flow velocity [m/s] σ_h = standard deviation of the water depth [m] μ_h = mean value of the water depth [m]

Three classes:

HMID < 5 : channelized or heavily altered site.

5 < HMID < 9 : site showing limited variability to near natural morphology.

HMID > 9 : reference site with fully developed spatial dynamics.

HMID measurements

Measuring flow depth and average flow velocity in **9 cross-sections (CS)**

SCCER-SoE Annual Conference Horw, 14 September 2018

HMID measurements

Measurement instruments:

- Flowtracker handheld-ADV (left)
- Differential GPS (middle)
- RFID antenna (right)

SCCER-SoE Annual Conference Horw, 14 September 2018

Flood in the Sarine

© Research unit Ecohydrology, ZHAW

SCCER-SoE Annual Conference Horw, 14 September 2018

Flood in the Sarine II

Allering

SCCER-SoE Annual Conference Horw, 14 September 2018

Flood in the Sarine III

15/19 SCCER 50E

Content

1_ Introduction to the topic

2_Methodology

Post flood analysis

- Partial erosion of deposits
- Behavior as expected by previous laboratory experiments

More information concerning the laboratory results in the PhD thesis of E. Battisacco: *"Replenishment of sediment downstream of dams: erosion and transport processes"*

SCCER-SoE Annual Conference Horw, 14 September 2018

Increase in hydraulic variability

		HMID _{total}		HMID _{impact zone}		HMID _{rest zone}	
		(9 CS, 200 dps)		(3 CS, 65 dps)		(6 CS, 135 dps)	
		BEFORE	AFTER	BEFORE	AFTER	BEFORE	AFTER
		FLOOD	FLOOD	FLOOD	FLOOD	FLOOD	FLOOD
		Q = 3.5	Q = 2.5	Q = 3.5	Q = 2.5	Q = 3.5	Q = 2.5
		[m ³ /s]	[m ³ /s]	[m ³ /s]	[m ³ /s]	[m ³ /s]	[m ³ /s]
μ_{h}	[cm]	49.7	45.9	40.2	38.3.1	54.7	49.1
σ_{h}	[cm]	29.4	31.4	18.2	22.6	32.8	34.0
$\mu_{\rm v}$	[m/s]	0.43	0.39	0.45	0.42	0.42	0.38
$\sigma_{\rm v}$	[m/s]	0.34	0.33	0.28	0.31	0.37	0.35
HMID	[-]	8.1	9.8	5.6	7.7	9	10.6
HMID		- 210/		- 260/		100/	
Variation		+21%		+30%		+18%0	

Key findings

- The **hydraulic habitat diversity increased** in the observed reach
- Significant increase in the reach where sediment was added
- > Additional information on **poster or WEL 2-2018** (detailed biological survey, in german)

Thank you for your attention!

Questions?

severin.staehly@epfl.ch – PhD student – Laboratoire de Constructions Hydrauliques (LCH) – EPFL

This research is funded by the National Research Programme (NRP) 70, Energy Turnaround

SCCER-SoE Annual Conference Horw, 14 September 2018