

The worldwide hydropower potential of periglacial environments

Vanessa Round, Matthias Huss, Daniel Farinotti

SCCER-SoE annual conference – Horw

Swiss Federal Institute for Forest, Snow and Landscape Research WSL Laboratory of Hydraulics, Hydrology and Glaciology (VAW)

Glacier change: local effects

New landscapes

New glacier lakes

Images © Glaciers online

Swiss Federal Institute for Forest, Snow and Landscape Research WSL Laboratory of Hydraulics, Hydrology and Glaciology (VAW)

Versuchsanstalt für Wasserbau Hydrologie und Glaziologie ÷

Glacier change: downstream effects

Changes to seasonal runoff regime

Idea: Use artificial storage reservoirs in place of glaciers to mitigate seasonal deficit?

→ What about the hydropower potential of such artificial storages?

Dams instead of glaciers?

The idea is not completely new... and has been implemented in the past.

Triftgletscher, Switzerland

<u>Goal:</u>

Quantify the theoretical hydropower potential of deglacierizing areas at the global scale.

© KWO Oberhasli

Theoretical storage volumes

Subglacial topography (from Huss & Farinotti, JGR, 2012)

Place a dam at the current glacier terminus

Reservoir optimization:

- wall angle providing minimum "wall area / lake volume" ratio
- max. 280m high, 800m wide

Theoretical storage volumes

Swiss Federal Institute for Forest, Snow and Landscape Research WSL Laboratory of Hydraulics, Hydrology and Glaciology (VAW)

Versuchsanstalt für Wasserbau Hydrologie und Glaziologie

Theoretical hydropower potential

Power = hydraulic head • runoff rate • gravity • density • efficiency

Hydraulic head

Maximum elevation drop from glacier terminus (use ASTER global DEM and impose min slope)

Runoff rate

Glacier runoff projections from the Global Glacier Evolution Model (GloGEM) (Huss & Hock, FRO, 2015)

Results: Theoretical potential

Laboratory of Hydraulics, Hydrology and Glaciology (VAW)

ersuchsanstalt für Wasserbau Eide, Forschungsanstat für Wald und Landschaft WSL Hydrologie und Glaziologie

largest dams

The global-scale picture

Global total potential ≈ 1.4 PWh/a

The global-scale picture

Global total potential ≈ 1.4 PWh/a

What's about suitability?

Remember: It's about 200,000 sites.

Environmental and social indicators

- World Heritage and protected areas
- Density of endangered species
- Global population density (proxy for demand)
- World Bank Development indicators:
 - political effectiveness and capacity
 - power production, usage, accessibility

- Reservoir fill time (=volume/runoff)
- Timing of glacier retreat, and surging
- Catchment slope (proxy for gravitational hazards)

Economic factors

- Accessibility cost: Global travel time grid
- Construction cost: Dam dimensions
- Costs to benefit ratios

Suitability indicators

ETH zürich

Everything combined, and put into context

- We provide the first quantification of the hydropower potential from deglacierizing areas at the global scale (ca. 200,000 potential sites).
- We estimate the potential to be ca. 1.4±0.5 TWh/a, of which about 40% passes a first-order suitability assessment.
- For some Countries, a small number of large dams could have a significant contribution to the national electricity demand.
- We acknowledge that our analysis is not exhaustive, and stress that site-specific analysis is necessary.

Thank you for your attention!

Top 10 sites* per country

