

Rock and fluid thermodynamics control the dynamics of induced earthquakes

M. Acosta, F. Passelègue, A. Schubnel et M. Violay

(mateo.acosta@epfl.ch)

Context – Induced Seismicity in Enhanced Geothermal Systems

UNDERSTAND THE MICROPHYSICAL INTERACTIONS BETWEEN PORE FLUID AND RESERVOIR FAULTS DURING INDUCED EARTHQUAKES

CONTEXT

METHODS

MODEL

IMPLICATIONS

Methods - Experiments

<u>Stick-Slip experiments</u> under Triaxial stress conditions $\sigma_1 > \sigma_2 = \sigma_3$

> <u>Samples:</u>

- 30 ° Saw cut westerly granite cylinders $(\phi=40 \text{ mm}; H=88 \text{ mm})$
- Instrumentation:
 - External measurements:
 - $\sigma_1; \sigma_3; p_f; \epsilon_1$
 - Internal sensors:

Near fault strain gauges

Best analogue for earthquakes

CONTEXT

METHODS

RESULTS

MODEL

Methods- Stick-slip experiments

Elastic loading until shear strength is reached

METHODS

CONTEXT

S

RESULTS

MODEL

IMPLICATIONS

Pceff=Pc-Pf= 70 MPa Pf held constant during experiment

Three pore pressure configurations (**DRY**, **Low Pf**, **High Pf**)

ÉCOLE POLYTECHNIQUI FÉDÉRALE DE LAUSANNI

CONTEXT

METHODS

<u>RESULTS</u>

MODE

Pceff=Pc-Pf= 70 MPa Pf held constant during experiment

Three pore pressure configurations (**DRY**, **Low Pf**, **High Pf**)

CONTEXT

.

<u>RESULTS</u>

Pceff=Pc-Pf= 70 MPa Pf held constant during experiment

Three pore pressure configurations (**DRY**, **Low Pf**, **High Pf**)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

CONTEXT

METHODS

<u>RESULTS</u>

MODF

Pceff=Pc-Pf= 70 MPa Pf held constant during experiment

Three pore pressure configurations (**DRY**, **Low Pf**, **High Pf**)

CONTEXT

METHODS

<u>RESULTS</u>

MODF

IMPLICATIONS

Results- Static stress drop .Vs. Slip

Pceff=Pc-Pf= 70 MPa Pf held constant during experiment

Pore pressure = low <u>static</u> stress drops

ÉCOLE POLYTECHNIQUI ÉCOLE POLYTECHNIQUI

CONTEXT

METHODS

<u>RESULTS</u>

MODEL

IMPLICATIONS

Results – Dynamic stress drop

Pceff=Pc-Pf= 70 MPa

Pf held constant during experiment

Dynamic recording of near fault stress

COLE POLYTECHNIQU

METHODS

CONTEXT

RESULTS

MODE

IMPLICATIONS

Results – Dynamic stress drop

Results – Dynamic stress drop .Vs. Slip

Results – Dynamic Friction

Asperity temperature model - Description

$$\Delta T = f\left(\tau_{a}, v\right) - g\left(T, \rho_{w}\left(P, T\right), C_{pw}\left(P, T\right)\right)$$

METHODS

Heat source rate

CONTEXT

Temperature buffering

RESULTS

MODE

IMPLICATIONS

Under review in Nature Communications: Acosta et al. 2017

Flash Temperature = maximum transient temperature responsible for weakening

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Asperity temperature model - Description

METHODS

CONTEXT

FÉDÉRALE DE LAUSANN

RESULTS

Under review in Nature Communications: Acosta et al. 2017

IMPLICATIONS

MODEL

Asperity temperature model - Results

METHODS

CONTEXT

ÉCOLE POLYTECHNIOUI

FÉDÉRALE DE LAUSANNE

RESULTS

Under review in Nature Communications: Acosta et al. 2017

IMPLICATIONS

MODE

Thermal pressurization model

- Difference DRY and LOW Pf ??

- Stress drop at HIGH PF ??

THERMAL PRESSURIZATION.

Thermal pressurization accounts for reduction in dynamic friction

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

CONTEXT

METHODS

RESULTS

MODEL

IMPLICATIONS

Thermodynamics control dynamic weakening processes during earthquake rupture.

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

CONTEXT

RESULTS

MODEL

Careful! – σ_N Evolves with depth!

Thermophysical properties of water and rock should be taken into account in physics based models

(PAL	
ÉCOLE POLYTECHNIQUE Fédérale de Lausanne	

CONTEXT

METHODS

OUESTIONS ?

Asperity temperature model – Parameter description

$$\Delta T = \frac{1}{\rho_{Qz} C_{pQz} \sqrt{k\pi}} \left(\tau_a v \sqrt{t_c} - \frac{V_w \rho_w}{t_c \pi a^2} \left(T C_{pw} + L_w \right) \sqrt{t_c} \right)$$

 ΔT in $^{\circ}C$ is the temperature rise at the contacting asperities.

v in $m.s^{-1}$ is the slip rate relative to the contacting asperities.

 t_c in s is the average contacting time between asperities which is defined as $t_c = \sqrt{\frac{a}{v}}$ by Rice, 2006.

 au_a in MPa is the shear stress acting on a single asperity at the onset of instability.

a in m is the average size of asperities defined as $a = \sqrt{\frac{F}{M\pi Pm}}$. Where:

F in N is the normal force applied to the surface.

M is the number of asperities in contact as defined by *Dietrich and Kilgore, 1994* and calculated for our surface. Pm in Pa the critical yield stress or penetration hardness of Quartz.

 ρ_{Qz} in $kg.m^{-3}$, C_{pQz} in $J.kg^{-1}.K^{-1}$ and k in $m^2.s^{-1}$ are respectively the density, specific heat and thermal conductivity of Quartz.

 $\rho_w(P,T)$ in $kg.m^{-3}$ and $C_{p_w}(P,T)$ in $J.kg^{-1}.K^{-1}$ are respectively the density and specific heat of water.

 V_w in m^3 is water volume interacting with asperities during shear heating defined in the same manner as *Violay et al*, 2013 over a thickness of 100 μm .

