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Context — Induced Seismicity in Enhanced Geothermal Systems
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Methods - Experiments
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Stick-Slip experiments under Triaxial stress conditions
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> Instrumentation:
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External measurements:

Strain gauge
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* Internal sensors:

Near fault strain gauges

Best analogue for earthquakes
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Stick slip on this fault!!!


Methods- Stick-slip experiments

i

"o - - - -
120 £1=10°s'; sampling frequency =100 Hz

b
&
=

Shear stress (MPa)
=)
=]

N B
@ &

L

400 450 200 9490
Time (s)

Elastic loading until shear strength is reached
P

ECOLE POLYTECHNIQUE . . . .
FEDERALE DE LAUSANNE Under review in Nature Communications: Acosta et al. 2017



Presenter
Presentation Notes
Keep the input energy constant! 
Values


Results- 100 Hz measurements
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Results- 100 Hz measurements

i
140
A

120

£1=10"° s"'; sampling frequency = 100 Hz

—h
(—]
(—]

Shear stress [(MPa)
e
=]

B
(— ]

— dry (03 =70 MPa - pf = 0 MPal
—— low fluid pressure (03 = 11 MPa - pf = 1MPa)

N
(—]

400 450 a00 290
Time (s]

Pceff=Pc-Pf=70 MPa

Pf held constant during experiment

Three pore pressure configurations (DRY, Low Pf, High Pf)
(| RESULTS

ECOLE POLYTECHNIQUE . . . .
FEDERALE DE LAUSANNE Under review in Nature Communications: Acosta et al. 2017



Presenter
Presentation Notes
Keep the input energy constant! 



Results- 100 Hz measurements
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Results- 100 Hz measurements
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Results- Static stress drop .Vs. Slip
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Results — Dynamic stress drop
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Results — Dynamic stress drop
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Results — Dynamic stress drop .Vs. Slip
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Results — Dynamic Friction
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Undeformed material

300_kV30 10000x SE 10.7

AccV SpotMagn Det WD }—m o+ 2um

-

" AccV SpotMagn Det ‘WD Exp
Y3.00 kv 30 10000x SE 107 1

d : i i

£ 2 ST

M‘ABCV Spot Magn  Det WD |—| 2 um

1X10000 =

—

¥ : fAcc.V SpotMagn Det WD — 2um
. , 5.00kV30 10000x SE 9.4

5ot materla‘t =



Presenter
Presentation Notes
SEM Under Secondary electron mode  Sliding surface!

A2==Flat and homogeneous … Diameter of the sperities
B2==Ropy streched textures forming glass slabs after cooling==MELT
C2==Also Ropy and stretched structures no slabs==MELT
D2== Stretched soft nstructures in the sense of shear==No MELT
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SEM Under Secondary electron mode  Sliding surface!

A2==Flat and homogeneous … Diameter of the sperities
B2==Ropy streched textures forming glass slabs after cooling==MELT
C2==Also Ropy and stretched structures no slabs==MELT
D2== Stretched soft nstructures in the sense of shear==No MELT
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Asperity temperature model - Description

)
Bowden and Tabor, 1969

Archard, 1959 | Ar<<A = Ta>>Tt |

Violay et al, 2013 F ni

Heat source rate Temperature buffering

Flash Temperature = maximum transient temperature responsible for weakening

(|

ECOLE POLYTECHNIQUE . . . .
FEDERALE DE LAUSANNE Under review in Nature Communications: Acosta et al. 2017




S
Asperity temperature model - Description

i

Bowden and Tabor, 1969
Archard, 1959
Violay et al, 2013

A

Dependence
Heat source rate Temperature buffering onP &T!

Thermophysical properties of fluid depend on Pressure & Temperature
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Asperity temperature model - Results
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Regarder QZ remplacer par le granite.!!!!!!!!!!!!!!!!!!!!!!!!!1
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Thermal pressurization model

i
A Rice, 2006

- Difference DRY and LOW Pf ?? 14+ /O;T

- Stress drop at HIGH PF ?? 25
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Regarder QZ remplacer par le granite.!!!!!!!!!!!!!!!!!!!!!!!!!1
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CONCLUSIONS.

Reduced THERMAL WEAKENING

THERMAL WEAKENING

THERMAL PRESSURIZATION
FLASH HEATING
(decomposition of contacts)
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Thermodynamics control dynamic weakening processes during
earthquake rupture.
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Careful! — @, Evolves with depth!

i

High Depth => Higher stress => FLASH HEATING

Dynamic friction
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Thermophysical properties of water and rock
should be taken into account in physics based models
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Asperity temperature model — rParameter description

i

1 Vp
AT = TVt — —%(TCy, + L,) V1.
pQZOsz v kﬂ- pﬂ.a

AT in °C' is the temperature rise at the contacting asperities.
v in m.s~ ! is the slip rate relative to the contacting asperities.
t. in s is the average contacting time between asperities which is defined as t, = \/*? by Rice, 2006.

To in M Pa is the shear stress acting on a single asperity at the onset of instability.
a in m is the average size of asperities defined as a = / —2—. Where:
= 1\.-' MrPm

Fin N is the normal force applied to the surface.
M is the number of asperities in contact as defined by Dietrich and Kilgore, 1994 and calculated for our surface.
Pm in Pa the critical yield stress or penetration hardness of Quartz.

2 1

p,. nkgm™3, Cp,_ in Jkg 'K~ and k in m?.s~" are respectively the density, specific heat and thermal conduc-

tivity of Quartz.
p. (P, T) in kg.m™* and Cp,, (P,T) in Jkg '.K ! are respectively the density and specific heat of water.
3

Vi in m? is water volume interacting with asperities during shear heating defined in the same manner as Violay et
al, 2013 over a thickness of 100 pm.
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