

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

Development of methods and tools responding to the needs of energy transition: PSI perspective

S. Hirschberg, P. Burgherr, E. Panos 14.9.2017

In cooperation with the CTI

E

Energy funding programme Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Commission for Technology and Innovation CTI

Renewable energy changes the electricity system

Main challenges in electricity modelling but very important to model the full energy system since (1) electricity is fundamental for the overall efficiency improvement; (2) necessary for optimal (with view to efficiency, cost, climate protection goals, etc.) allocation of electricity to specific demand sectors:

- Distinguishing between centralized and decentralized generation
- Representing electricity grid from high to low voltage
- Identifying storage options and new business models, e.g. prosumers
- Capturing the intra-annual variability of renewable generation and demand
- Assessing interactions between demand and supply

Methods, Models and Databases

Swiss TIMES energy systems model

Ecoinvent Database

Impact Pathway Approach

Bilevel Electricity Market Model

ENSAD Database

Risk Assessment

Integration:

Multi-Criteria Decision Analysis

Technology Database

New Technologies

Sustainability Criteria

	Criterion
ENSION	RESOURCES
	Energy Resources
	Mineral Resources (Ores)
N	CLIMATE CHANGE
ENVIRONMENTAL L	IMPACT ON ECOSYSTEMS
	Impacts from Normal Operation
	Impacts from Severe Accidents
	WASTES
	Special Chemical Wastes stored in Underground Depositories
	Medium and High Level Radioactive Wastes to be stored in Geological Repositories
DIMENSION	IMPACTS ON CUSTOMERS
	Price of Electricity
	IMPACTS ON OVERALL ECONOMY
	Employment
	Autonomy of Electricity Generation
N	IMPACTS ON UTILITY
0 C	Financial Risks
Ц	Operation
SOCIAL DIMENSION	SECURITY/RELIABILITY OF ENERGY PROVISION
	Political Threats to Continuity of Energy Service
	Flexibility and Adaptation
	POLITICAL STABILITY AND LEGITIMACY
	Potential of Conflicts induced by Energy Systems.
	Necessity of Participative Decision-making Processes
	SOCIAL AND INDIVIDUAL RISKS
	Expert-based Risk Estimates for Normal Operation
	Expert-based Risk Estimates for Accidents
	Perceived Risks
	Terrorist Threat
	Effects on the Quality of Landscape
	Noise Exposure

The Swiss TIMES energy systems model (STEM)

- Energy systems models are the main tool for assessing long-term transformation strategies
- The STEM model represents the Swiss energy system from resource extraction to end-uses
- It is a bottom-up cost optimization model with long time horizon (2015 2100)
- It has high hourly resolution and high technological detail (> 350 processes/technologies)
- Significant development has been done in STEM to respond to the electricity sector's challenges

Centralized vs decentralized supply & grid levels

- Each grid level is differentiated in terms of transmission cost and losses
- Different types of power plants and storage options can be connected to each level
- A linearized approximation of the power plant unit commitment problem (dispatch) is formulated
- This structure allows for capturing the effect of incentives for decentralized generation and the benefits
 of own consumption and/or selling excess supply to upper grid levels (prosumers)

REPRESENTATION OF CENTRALIZED/DECENTRALIZED GENERATION AND DIFFERENT GRID LEVELS IN THE STEM MODEL

ELECTRICITY GENERATION MIX IN 2050 REFERENCE SCENARIO

Source: PSI/Kannan & Panos, 2017

Representation of transmission grid

Grid

- The detailed transmission grid is mapped to an aggregated grid with 15 nodes and 319 lines
- The mapping is based on a fix disaggregation of the reduced network injections to detailed network injections, by taking into account the grid transmission constraints
- This structure allows for evaluating the impact of grid congestion on electricity supply and demand

Transport is excluded in cost calculations

Capturing the variability of renewables

- SCCER SOE
- The variability of RES is based on the variance of mean RES production in each hour and for each typical day represented in the model over a 20-year bootstrapped sample
- This allows to assess the storage requirements to balance the RES production
- High shares of VRES require electricity storage peak capacity of ca. 30 50% of the installed capacity of wind and solar PV (together)
- About 13% of the excess summer VRES production is seasonally stored in P2G

VARIABILITY OF SOLAR PV GENERATION IN

A SUMMER TYPICAL DAY IN THE STEM MODEL

ELECTRICITY FROM WIND AND SOLAR PV VS INSTALLED PEAK STORAGE CAPACITY IN DIFFERENT SCENARIOS AND YEARS

Each data point corresponds to a different long term scenario and year

Features of PSI's analytical framework for comprehensive energy systems modeling

- Strong technological basis
- Scope covers environmental, economic and social dimensions
- Variety of methods, models and databases
- Inter-disciplinary technology assessment coupled with system models
- Integrative approaches combining knowledge with stakeholder preferences
- Systematic approach to modeling and assessing prospective tchnological advancements
- Endogenous capacity expansion
- Systematic extension of system models within a modular framework
- Representation of whole energy system with detailed modeling of demand sectors (e.g. mobility)
- Coupling of bottom-up technology rich system models with grid
- Geographic coverage (CH, Europe, China and other regions, global)
- Temporal resolution and striving for increased spatial resolution
- Ongoing developments towards integrating behavior in system models
- Continuity and expandability

Thank you for your attention!

Acknowledgements:

Kannan Ramachandran Tom Kober

