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The challenge of mitigating induced seismicity

source: FOX 23 News

source: Dutch News



Traffic-Light Systems (TLS) as a solution

 Consists in minimizing induced seismicity based on:
 Decision variable (e.g., earthquake magnitude, peak 

ground velocity)
 Threshold value above which actions are taken (e.g., 

reduction or stopping of injection) 

 Tools still inherently heuristic & mostly based on expert 
elicitation
 Different regulations in different regions
 How are those magnitude thresholds chosen?
 How do they relate to risk? (risk-based safety norms 

in other hazardous industries, e.g., chemical plants) source: Bosman et al. (2016)
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 One of the goals of T4.1 “Risk, safety & public acceptance” is to propose an actuarial approach to 
this problem in the scope of a TLS-based induced seismicity risk governance framework



A closer look at what happened in Basel, 2006

2006 Basel EGS data sources:

Häring et al. (2008);

Kraft & Deichmann (2014)

TLS source:

Häring et al. (2008)

source: modified from Mignan (2016)



Induced seismicity rate model

2006 Basel EGS data sources:

Häring et al. (2008);

Kraft & Deichmann (2014)

 Linear relationship between 
flow rate ΔV(t) and induced 
seismicity rate λ(t)

 Overall activity or “underground 
feedback” represented by afb

 Normal diffusion in post-
injection phase with mean 
relaxation time τ

source: modified from Mignan (2016)



Deep fluid injections around the world

 Simple model fits reasonably 
well most of the sequences 
(based on MLE & KS test)

 High variability of 
underground feedback
 -2.8 ≤ afb ≤ 0.1 m-3

 0.8 ≤ b ≤ 1.6
 0.2 ≤ τ ≤ 20 days

 Second-order deviations 
from model still to be 
understood
 Missing on-site data?
 Second-order physics?

source: Mignan et al. (in rev., Sci. Rep.)



Developing a TLS based on the rate-model (1/2)

 Let us define a risk-based safety norm
 Fixed to Pr(fatality) = Y = 10-6

 Risk of earthquake damage 
assumed to be insured

 Can be mapped into magnitude space
 Poisson process with Pr(≥msaf) = 

1-exp N(≥msaf)
 Total number N obtained by 

integrating rate model

 Closed-form means
 Almost instantaneous 

computation
 Robust & transparent

modified from Mignan et al. (in rev., Sci. Rep.)

(for V=10,000m3, 4km depth, d=0km from borehole)



Developing a TLS based on the rate-model (2/2)

source: Mignan et al. (in rev., Sci. Rep.)

a. Simulation of 2006 Basel time 
series
 Stochastic process based 

on rate model

b. Temporal evolution of (afb,b)
 Risk evolves with time
 Adaptive TLS (ATLS)

c. TLS definition
 Stop injecting above mth

d. TLS validation
 Over millions of 

simulations, we observe 
that the safety norm is 
respected in average



Hierarchical Bayesian forecasting

 Bayesian online updating, including uncertainty quantification
 Predicts both the number of events & the expected maximum magnitude
 See SCCER-SoE T4.1 poster by Broccardo et al.

source: Broccardo et al. (submitted)
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Next steps

 Consider the impact of a TLS on the EGS business 
(see poster “The price of public safety in EGS 
projects”)
 Seismic risk turned into increased price/kWh
 Decision-making under uncertainty to quantify 

stakeholders’ behaviour
 Improved physical model of induced seismicity

 Changes of injectivity; pressure minimum 
threshold?  (insights from DUG-Lab)

 Could provide smarter strategies, e.g., 
modifying injection profile instead of brutal 
stop

 TLS in legislations & public acceptance (SoE-CREST 
JA)
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