



# Challenging onboard measurements in a 100 MW high-head Francis turbine prototype

#### **Vlad Hasmatuchi**

Jean Decaix Cécile Münch-Alligné

Maximilian Titzschkau

François Avellan











Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

**Commission for Technology and Innovation CTI** 





Birmensdorf - September 15th, 2017

#### FLEXSTOR - WP6 - Goals & Tasks



#### Case study: Grimsel II power plant - 100 MW high-head Francis turbine prototype



Source: Schlunegger & Töni, 2013





#### Problematic

- ✓ PSPP: subject to increasing number of start/stops
- ✓ High-head machines: particular high structural loading during start-up
- ✓ Frequent operation under such conditions may conduct to premature fatigue !
- Objective: identification of harmful operating conditions and proposal of a solution to extend the runners lifetime



Total no. of start/stops: Runner A: 4579 450 Source: KWO **Runner B: 6326** 400 **Runner C: 4977 Runner D: 4012** 350 **Runner E: 3083** 300 250 200 150 100 50 



**Hes**·so

Source: KWO







V. Hasmatuchi et al., "Challenging onboard measurements in a 100 MW highhead Francis turbine prototype", Birmensdorf, Switzerland, Sept. 15<sup>th</sup> - 2017

&

Page 4

![](_page_3_Picture_2.jpeg)

# Numerical simulation setup

- Inlet: flow rate or total pressure.
- Outlet: Opening with an averaged pressure.
- Solid: no slip wall.
- Runner domain: rotational velocity N = 750 min<sup>-1</sup>.
- Frozen/Stage interface.
- SST k-ω turbulence model.
- Number of iterations: 1'000.
- High order scheme for the mean flow equations.
- First order scheme for the turbulent flow equations.

| Part        | No. of nodes | No. of elements |
|-------------|--------------|-----------------|
| Inlet       | 207'000      | 197'000         |
| Spiral Case | 3'528'000    | 3'432'000       |
| Stay Vanes  | 2'920'000    | 2'753'000       |
| Guide Vanes | 3'723'000    | 3'538'000       |
| Runner      | 2'786'000    | 2'637'000       |
| Draft tube  | 1'574'000    | 1'534'000       |
| Total       | 14'738'000   | 14'091'000      |

![](_page_4_Picture_11.jpeg)

Haute Ecole d'Ingénierie  $\pi$ Hochschule für Ingenieurwissenschaften

![](_page_4_Picture_13.jpeg)

![](_page_4_Picture_14.jpeg)

![](_page_4_Picture_16.jpeg)

## Numerical simulation results

- Several steady and unsteady numerical flow simulations already performed
- Numerical setup ready for simulation of an off-design operating point

| Boundary conditions       | Simulation | Mesh    | α<br>[deg] | Q<br>[m³ s⁻¹] | H<br>[m]  | P <sub>mec</sub><br>[MW] | Н<br>[-] |
|---------------------------|------------|---------|------------|---------------|-----------|--------------------------|----------|
| Imposed mass<br>flow rate | Steady     | Coarse  | 20         | 17            | 302       | 45                       | 0.91     |
|                           |            |         |            | 18            | 327       | 53                       | 0.92     |
|                           |            |         |            | 20.1          | 385       | 72                       | 0.95     |
|                           |            |         |            | 21            | 408       | 79                       | 0.95     |
|                           | Steady     | Refined | 20         | 20.1          | 377       | 69                       | 0.94     |
|                           | Unsteady   | Coarse  | 20         | 20.1          | 387       | 72                       | 0.95     |
| Imposed Head              | Steady     | Coarse  | 20         | 19.2          | 370 (380) | 67                       | 0.94     |
|                           |            |         |            | 20.5          | 397 (410) | 74                       | 0.94     |
|                           |            |         | 18         | 17.7          | 376 (380) | 61                       | 0.95     |
|                           |            |         | 22         | 20.8          | 364 (380) | 69                       | 0.92     |

![](_page_5_Figure_4.jpeg)

SCCER

![](_page_5_Picture_5.jpeg)

# Experimental instrumentation architecture

![](_page_6_Picture_1.jpeg)

Haute Ecole d'Ingénierie  $\pi$ Hochschule für Ingenieurwissenschaften

![](_page_6_Figure_3.jpeg)

## Onboard system – challenges

![](_page_7_Picture_1.jpeg)

- ✓ Relatively high static pressure operating conditions: up to 17 bars
- ✓ Important centrifugal forces: runner speed of 750 rpm
- ✓ Particular geometrical configuration of the machine:
  - Horizontal axis shaft: requires a robust fastening of components inside the chamber
  - Presence of a central tube inside of the diffuser: impossible frontal access to the instrumented chamber
  - Impossibility to communicate with the system from outside during the operation:
    - Autonomous power supply (high-capacity batteries)
    - Autonomous continuous acquisition of signals
    - o Autonomous remote data storage

HES-SO Valais-Wallis

![](_page_7_Picture_11.jpeg)

## Onboard instrumentation

![](_page_8_Picture_1.jpeg)

Haute Ecole d'Ingénierie  $\pi$ Hochschule für Ingenieurwissenschaften

1x Gantner Q.brixx acquisition system
2x 21 Ah, 22.2 VDC LiPo batteries
1x power supply protection electronics
8x quarter bridge strain gauges
2x single-axis IEPE accelerometers
2x inductive tachometers

![](_page_8_Figure_4.jpeg)

![](_page_8_Picture_5.jpeg)

![](_page_8_Picture_6.jpeg)

![](_page_8_Figure_7.jpeg)

![](_page_8_Picture_8.jpeg)

![](_page_8_Picture_10.jpeg)

## Onboard instrumentation

![](_page_9_Picture_1.jpeg)

Haute Ecole d'Ingénierie  $\pi$ Hochschule für Ingenieurwissenschaften

- ✓ Main features:
  - Autonomous multichannel synchronous
     10 kHz continuous acquisition
  - Data storage capacity: 2xUSB 16GB
  - Autonomy of power supply : > 20h
  - Protection relay against deep discharge of the batteries
  - Waterproof connectors ensuring data downloading, fast controlled recharging of batteries and system power switch on/off

![](_page_9_Picture_9.jpeg)

![](_page_9_Picture_10.jpeg)

![](_page_9_Picture_11.jpeg)

# Rotating/stationary frames synchronization

![](_page_10_Picture_1.jpeg)

✓ Based on hammer impacts detected by the employed accelerometers

![](_page_10_Figure_3.jpeg)

![](_page_10_Picture_4.jpeg)

![](_page_10_Picture_6.jpeg)

#### Basic modal analysis (in air) of the runner

![](_page_11_Picture_1.jpeg)

Haute Ecole d'Ingénierie  $\pi$ Hochschule für Ingenieurwissenschaften

![](_page_11_Figure_3.jpeg)

![](_page_11_Picture_4.jpeg)

![](_page_11_Picture_6.jpeg)

## Tested operating conditions

- Normal turbine operation
- Deep part-load operation
- Normal turbine start-up:
  - GV opening speed of 2%/sec
- ✓ Modified slower turbine start-up:
  - GV opening speed of 1.5%/sec
  - GV opening speed of 1 %/sec
  - GV opening speed of (1 + 2)%/sec
- Normal pump start-up

Page 15

![](_page_12_Figure_10.jpeg)

head Francis turbine prototype", Birmensdorf, Switzerland, Sept. 15th - 2017

Hes·so/ Haute Ecole d'Ingénierie  $\pi$ Hochschule für Ingenieurwissenschaften @η<sup>\*</sup>[-] 0.275 <u></u> (°] <sup>O</sup>P<sub>-</sub> [-] Dynamic measurements 2016 0.25 Dynamic measurements 2017 0.225 0.2  $\Xi$ **Q** 0.175 a

## Evidence of harmful structural loading

![](_page_13_Picture_1.jpeg)

Haute Ecole d'Ingénierie  $\pi$ Hochschule für Ingenieurwissenschaften

![](_page_13_Figure_3.jpeg)

![](_page_13_Picture_4.jpeg)

![](_page_13_Picture_6.jpeg)

#### **Conclusions & Perspectives**

![](_page_14_Picture_1.jpeg)

- ✓ Successful challenging onboard measurements in a 100 MW high-head Francis turbine
- The SNL operating conditions encountered for several tens of seconds during each start-up and shut down procedures seems to be the main source of fatigue (also noticed in Gagnon et al. 2010)
- Seek for a feasible simple technical solution to reduce the harsh structural loading on the turbine runner during start-up and shut down procedures
- Setup of a 3<sup>rd</sup> experimental campaign using only simplified instrumentation to test the new proposed start-up method(s)
- Establishment of a diagnosis protocol based on a simplified instrumentation set to identify harsh operating conditions on different hydropower units

 $\Sigma \pi \approx 8$  HES-SO Valais-Wallis Page 17

![](_page_14_Picture_9.jpeg)

#### Acknowledgements

#### Hes.so Valai Haute Ecole d'Ingénierie

Haute Ecole d'Ingénierie  $\pi$ Hochschule für Ingenieurwissenschaften

#### Development team of FLEXSTOR - WP6 (CTI no. 17902.3 PFEN-IW-FLEXSTOR)

- **HES-SO VS:** V. Hasmatuchi, J. Decaix, C. Cachelin, O. Walpen, L. Rapillard, C. Münch-Alligné
- **EPFL-LMH:** A. Renaud, F. Avellan
- KWO:

M. Titzschkau

![](_page_15_Picture_8.jpeg)

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

**Commission for Technology and Innovation CTI** 

![](_page_15_Picture_12.jpeg)

![](_page_15_Picture_13.jpeg)

![](_page_15_Picture_14.jpeg)

![](_page_15_Figure_15.jpeg)

*V. Hasmatuchi et al., "Challenging onboard measurements in a 100 MW high-head Francis turbine prototype", Birmensdorf, Switzerland, Sept. 15th - 2017* 

**FlexSTOR** 

![](_page_15_Picture_17.jpeg)

![](_page_15_Picture_18.jpeg)

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

#### In cooperation with the CTI

Swiss Co

Energy funding programme Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Commission for Technology and Innovation CTI

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

# Challenging onboard measurements in a 100 MW high-head Francis turbine prototype

Vlad Hasmatuchi Jean Decaix Cécile Münch-Alligné

Maximilian Titzschkau

François Avellan

![](_page_16_Picture_6.jpeg)

![](_page_16_Picture_7.jpeg)

![](_page_16_Picture_8.jpeg)

![](_page_16_Picture_9.jpeg)

![](_page_16_Picture_10.jpeg)

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

**Commission for Technology and Innovation CTI** 

![](_page_16_Picture_14.jpeg)

![](_page_16_Picture_15.jpeg)

Birmensdorf - September 15<sup>th</sup>, 2017