Demo: CO₂ geological storage pilot

M. Mazzotti

& Stefan Wiemer (ETHZ)

Sion, 13.9.2016

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

In cooperation with the CTI

Energy funding programme

Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Commission for Technology and Innovation CTI

Motivation

negative emissions

Motivation

LOWEST COST DECARBONISATION FOR THE UK: THE CRITICAL ROLE OF CCS

Report to the Secretary of State for Business, Energy and Industrial Strategy from the Parliamentary Advisory Group on Carbon Capture and Storage (CCS)

September 2016

UK case

I have been surprised myself at the absolutely central role which CCS has to play across the UK economy if we are to deliver the emissions reductions to which we are committed at the lowest possible cost to the UK consumer and taxpayer.

While some of the recommendations may at first reading appear unconventional, they are absolutely focused on the delivery of least cost solutions.

strategic carbon dioxide resource

CCS activities in Switzerland

Very limited activities since CARMA, limited support within CH!

¢	Schweizerische Eidgenossenschaft Confederation suisse Confederation Skizera Confederation skizera	Eldgendesisches Department für Ummit, Verlahr, Energie und Kommunkation UVEX Bundesamt für Energie BPE	
	Final Report 31 May 2013		
	Roadmap for a Carbon Dioxide Capture and Storage pilot project in Switzerland		

SCCER Roadmap (Phase I & II)

Class Research

excellence

invested

9 European countries

20+ labs (all elements)

Open access to promote

Pilot phase started 2015

Fully operational 2016/17

Investment ~€200 Million

(KRW 260 billion), €35Million already

"Enabling low to zero CO2 emissions from industry and power generation"

http://www.eccsel.org/

ERANET Cofund ACT

What is ACT?

ACT aims to <u>A</u>ccelerate and mature <u>C</u>CS <u>T</u>echnologies by making available funds for research and innovation activities.

A new instrument under Horizon 2020 called ERA NET Cofund is a new tool for European countries together with the European Commission (EC) to establish large common calls.

Ten partners from nine countries have established ACT, an ERA NET Cofund on CCS, with the objective of accelerating deployment of CCS.

What will ACT do?

Early in 2016, ACT will publish a joint call for RD&D proposals. The budget for the call is close to **41 million euro** and the call will ask for large transnational projects that facilitate the incorporation of CCS in the energy and industrial sectors.

Stay informed

Information will be available at the ACT web site that will be up and running in February 2016: www.ACT-CCS.eu

ACT members

ERANET Cofund ACT

ACT Timeline

February 2016: Preannouncement of the call.

June 2016: Call text to be published.

September 2016: Due date for proposals, stage 1. Only sketches of how the projects will look like are required.

September 2016: Invitation to second stage for all application passing stage 1

January 2017: Due date for proposals, stage 2. Full proposals are required.

July 2017: Evaluation of proposals completed

July 2017: Signing contracts with new projects

July 2020: Projects closing

Indicative distribution of the budget

The total budget for the 2016 ACT call is close to 41 million euro.

CH ACT roadmap

ELEGANCY

Enabling the Low Carbon Economy by Hydrogen and CCS

Call: Contact person: Project partners: ACT stage 1, pre-proposal, deadline 2016-09-07

on: Chief Scientist Svend Tollak Munkejord, SINTEF ER, +47 47378042

rs: SINTEF ER, BGS, ECN, ETH, ICL, PSI, RUB, SCCR-SoE, TNO, Arntzen de Besche, Casale, Climeworks, First Climate, Scottish Enterprise, Shell, Swerea MEFOS

Lead: SINTEF (Norway)

ELEGANCY

Figure 1: ELEGANCY research overview.

Figure 2: ELEGANCY work breakdown structure.

ELEGANCY

Case studies incl. social acceptance, e UK (Leeds & Aberdeen), Netherlands Switzerland (decarbonisation of trans	nvironmer (Rotterdam port sector)	ital aspects and CCS/H₂ market consideration), Norway (full scale CCS chain and offshore a), Germany (centralized and decentralized	1s: ctivities),	
decarbonization)			WP5	
H ₂ -CCS chain tool and evaluation methodologies for integrated chains: (ICL, SINTEF, PSI, RUB, TNO)				
Business case development: (Arntzen de Besche, FirstClimate, Sustainable Decisions)				
H ₂ supply chain includin H ₂ /CO ₂ separation	Ng WP1	CO ₂ transport, injection and storage	WP2	
 H₂ from natural gas (Casale, ETH, H₂ from other sources (ECN) Characterization of CO₂/CO/H₂ mixtures (RUB) 	PSI)	 CO₂ pipeline transport (SINTEF) CO₂ transport – injection interface (SII Site selection for storage (ICL, BGS, ET Intermittent supply (BGS) Optimizing capacity (BGS, ETH) De-risking storage (ICL, BGS, ETH) 	NTEF) H)	
ELEGANCY project management (SINTEF)			WP6	

Swiss Case study: Capture

- Today, transport is responsible for about 25% of global CO₂ emissions, almost 80% of which due to road transport. In Switzerland, CO₂ emissions from transport currently reach 40% of the total. Therefore, decarbonization of the transport sector is key for a successful reduction of the total CO₂ emissions.
- ELEGANCY postulates the decarbonization of the road transport through the use of **hydrogen**, which is produced from fossil fuels while capturing and storing the by-product CO₂. ELEGANCY explores the value- and supply-chain of hydrogen from the fossil fuel raw material to its distribution to the end users, as well as the associated CCS value-chain.
- ELEGANCY will focus on the H₂-CO₂ separation from a natural gas derived mixture in small-to-medium scale H₂ production plants

Swiss Case study: Storage

- The SCCER-SoE Phase II proposes to installs as Pilot and Demonstration project 4, a CCS field demonstrator, including a CO₂ geological storage test-site. These would move the ongoing conceptual and validation work based in the laboratory to the next level: prototyping.
- Funds request within ELEGANCY for the Swiss case study will be used to enable and accelerate this CCS field demonstrator in Switzerland and therefore focus on accelerating the national Swiss CCS roadmap.
- The major obstacles for implementation of CCS in Switzerland are
 1. an unclear business case;
 - 2. the uncertainty whether the targeted saline aquifers are safe and economically viable options;
 - 3. the challenges due to societal acceptance

stored

CO,

DACCS pilot in Switzerland: Demo 4

- Injection of ktons of CO₂ captured from air by Climeworks
- Needed: land, heat and electricity
- Injection system to be developed, with partners
- WORLDWIDE UNIQUE DACCS PILOT

Swiss Case study: Storage

- Task 1: Developing a 'clean' source of CO₂ for the field demonstrator.
- Task 2: Understanding societal readiness for CCS, DACCS and CCSU
- **Task 3:** Site identification and characterization.
- **Task 4:** Reservoir modelling and validation.
- **Task 5:** Risk assessment, monitoring and mitigation.
- \rightarrow Knowledge Transfer from key partners.
- → All storage funds requested (~1.8M Euro) to the SCCER-SoE.
- \rightarrow Management by a steering group.

Fig. 7 Intrabasinal evaluation of the potential of the Swiss Molasse Basin and adjacent Jura for geological storage of CO₂. Colours show potentials above 0.6

Thank you

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Eidgenössisches Departement für Umweit, Verkehr, Energie und Kommunikation UVEK Bundesamt für Energie BFE

Final Report 31 May 2013

Roadmap for a Carbon Dioxide Capture and Storage pilot project in Switzerland

Carbon capture and storage in Europe

EASAC policy report 20

May 2013

ISBN: 978-3-8047-3180-6

This report can be found at www.easac.eu