

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

Controlled fine sediment release from a reservoir by a hydrodynamic mixing device Demonstrator SEDMIX

Anton Schleiss, LCH-EPFL

Annual Conference, Sion, 12. 9. 2016

In cooperation with the CTI

Swiss Confederation

Commission for Technology and Innovation CTI

Problem of reservoir sedimentation

Mauvoisin arch dam in Canton Wallis

Sediments in front of the bottom outlet during emptying in May 1985

Problem of reservoir sedimentation

Volume loss Switzerland [10⁶. m³]

Comparison of increase due to construction and loss due to reservoir sedimentation

Turbidity currents as the main SCCER SOE sedimentation process in deep reservoirs

Example of turbidity current simulation in Grimsel reservoir (flood 2000)

Example of turbidity current simulation in Grimsel reservoir (flood 2000)

SEDMIX

Controlled fine sediment release from a reservoir by a hydrodynamic mixing device

Idea illustrated at Mauvoisin reservoir

Concept proof with experimental set-up Thesis Jolanda Jenzer-Althaus

Jenzer-Althaus J., De Cesare G., & Schleiss A. J. (2014). Sediment evacuation from reservoirs through intakes by jetinduced flow. Journal of Hydraulic Engineering, 141 (2),

Jenzer-Althaus J., De Cesare G., & Schleiss A. J. (2016). Release of suspension particles from a prismatic tank by multiple jet arrangements. Chemical Engineering Science, 144, 153–164.

Annual Conference Sion, September 12, 2016

Circular jet arrangement producing a mixer-like upflow

Discharge and geometrical parameters

Sediment release - circular jet arrangements

Sediment release - circular jet arrangements Off-bottom clearance

Circular jet arrangement

Optimal jet configuration

C/B	= 0.175
h _i /B	= 0.25
h/B	= 0.6
d _{axis} /B	= 0.525
l _j /B	= 0.15
φ	$=0^{\circ}$

Axial

Axial/Radial

Controlled fine sediment release from a reservoir by a hydrodynamic mixing device

From experiments to prototype

- The sediment mixer is a circular pipe arrangement that is installed near the dam reservoir bottom at the vicinity of the power intake.
- The facility is equipped with a four nozzles releasing pressurized water jets and inducing sufficient upwind turbulence to maintain fine sediments in suspension, thus preventing them from settling near the dam
- Fine sediment are then continuously released downstream the power waterways (without water and energy loss) with a small concentration.
- The operation of the sediment mixer can be operated following a turbidity current flood-driven event or be scheduled for periodical sediment release operations.
- The <u>demonstrator</u> mixer operates with a pump needing electrical power supply
- The mobile mixing devise (demonstrator) will be tested at several dams to show his efficiency

DEMONSTRATOR B

Controlled fine sediment release from a reservoir by a hydrodynamic mixing device

Demonstrator concept and experimental set-up requirements

- The demonstrator is composed of two main parts in steel construction: a water supply pipeline and a multi-nozzle manifold frame.
- It will be conceived for max. 200 m water depth and internal/external water pressure of 25 bar.
- The supply pipeline is mostly anchored onshore and the remainder lies on the reservoir bottom;
- The manifold circular frame is assembled onshore, then positioned with a system of water/air floaters/ballast;
- The facility can be installed on a given dam reservoir then disassembled & moved to another

Mauvoisin - Preliminary implementation

250 m high arch dam Built in early 1950s 1989 -1991: dam was heightened by 13.5 m (storage capacity increase) 2001 - 2006: heightening of water intake and bottom outlet (by 36 and 38 m) Mean head of water transfer tunnel (Corbassière & Séry): H_{avg} = 117 m Yearly sediment yield into dead storage (by turbidity currents): 155'000 m³ Settling velocity estimated at $w_s = 2.4$ mm/s (Stokes' law, 10° C summer term) FMM SA

Mauvoisin – Economic analysis

Jet construction costs estimated at 924'000 CHF

	Without jets	With jets
Annual costs	1.4 – 4.6	0.08
[10 ⁶ CHF]	(conventional removal)	(20 years payback period)
	1.27	
	(bottom outlet and water intake heightening with 20 years payback period)	

Even if only 7 % of the yearly incoming sediment would be released by means of jets a circular jet installation the latter is economical and recommended in view of a sustainable reservoir operation

Thank you for your

attention