

Global observatory of electricity resources (Task 4.2)

In cooperation with the CTI

Energy funding programme

Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Commission for Technology and Innovation CTI

Peter Burgherr, Paul Scherrer Institut (PSI) 11.09.2015

SCCER SOE

Content

- Persons involved
- Goals and Tasks
- Global Observatory Project Interactions
- Ongoing Activities
- Costs & potentials of future Swiss electricity supply
- Swiss Electricity Scenarios 2050

PIs:

Dr. Peter Burgherr CO, RA, MCDA

Dr. Stefan Hirschberg IA, MCDA

Dr. Hal Turton EE (until 30.09.2014)

Prof. Dr. Domenico Giardini Head SCCER SoE

Technology Assessment (TA) group:

Karin Treyer LCA, TC

Christian Bauer LCA, TC

Xiaojin Zhang LCA, TC

Dr. Thomas Heck EIA/EC

Dr. Warren Schenler CA, IN

Dr. Matteo Spada RA, MCDA

Dr. Emilie Sutra RA, TC

Energy Economics (EE) group:

Dr. Martin Densing EE

Dr. Evangelos Panos EE

CO = Coordination

LCA = Life Cycle Assessment

EIA/EC = External Impact Assessment / External Costs

RA = Risk Assessment

TC = Technology Characterization

IA = Integrated Assessment

MCDA = Multi-Criteria Decision Analysis

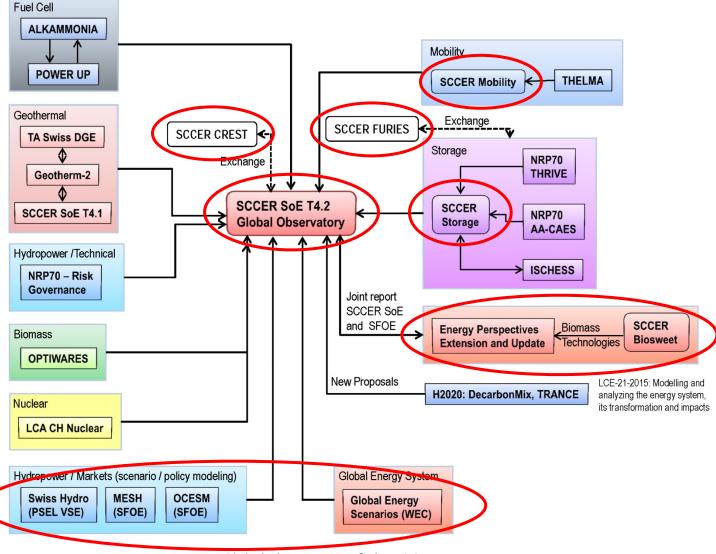
EE = Energy Economics

Goals and Tasks

Short-term (to 2016):

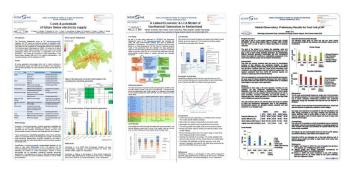
- Trend-based and comparative perspective on the prospective developments of technologies
 - TA: Characterization and sustainability assessment of current and future technologies
 - EE: Evaluation of existing trends, projections and scenarios
 - Milestone T4.2.1: Report on global evolution of electricity resources and market

Medium term (years 5-8):


- Assess technologies emerging from SCCER activities in future trend and scenario analysis
 - TA: Refine and extend technology monitoring and horizon scanning
 - EE: Scenario analysis of technologies emerging from SCCER

Long term (years 9-12):

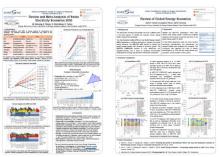
- Continuously improve technology monitoring
- Develop instruments and interactive tools for evaluation and visualization of trends in technology developments
 - TA & EE: Tool development with focus on dissemination and interactivity


Global Observatory Project Interactions

Ongoing Activities

Energy Perspectives Extension & Update

- Costs & potentials of future Swiss electricity supply
- A Linked Economic & LCA Model of Geothermal Generation in Switzerland
- Global Observatory: Preliminary Results for Fuel Cell µCHP


Health Effects

Health Effects of Technologies for Power Generation: Contributions from Normal Operation, Severe Accidents and Terrorist Threat

 Comparative Risk Assessment of Accidents in the Energy Sector using PSI's ENSAD Database

Scenario Comparison

 Review of Global Energy Scenarios

 Review and Meta-Analysis of Swiss Electricity Scenarios 2050

Costs & potentials of future Swiss electricity supply

- Substantial extension and update of PSI's previous study (Hirschberg et al. 2005*)
- Evaluation of costs, potentials, and environmental impacts of future
 Swiss electricity supply
- Carried out on behalf of the SFOE and is part of the "Global Observatory" within the SCCER SoE
- Collaboration with SCCER BIOSWEET for biomass technologies

- May 2015: 1st interim report

Dec 2015: 2nd interim report

Jun 2016: final report

^{*} Hirschberg, S., et al (2005) Neue Erneuerbare Energien und neue Nuklearanlagen: Potenziale und Kosten. PSI-Report Nr. 05-04., Paul Scherrer Institut, Villigen PSI, Switzerland.

Analyzed Technologies

Energy carrier	Technology	Location
Hydro	Small hydro	Domestic generation
	Reservoir	Domestic generation
	Run-of-river	Domestic generation
Wind	Onshore	Domestic generation
	Offshore	Imports from North Sea
Solar Photovoltaics	Different technologies, roof-top and open ground	Domestic generation
Solar thermal	Different technologies for oncentrating solar power	Imports from Southern Europe
Geothermal energy	Deep petrothermal (Engineered heat exchanger)	Domestic generation
	Hydrothermal	Domestic generation
Wave and tidal energy	Different technologies	Imports from the Atlantic ocean and the North Sea
Biomass, wet and dry	Large range of conversion technologies	Domestic biomass supply and power generation
Natural Gas	Combined cycle plants without and with Carbon capture & storage (CCS)	Domestic generation
	Fuel cells	Domestic generation
Coal	Plants with and without CCS	Imports from Germany
Nuclear	Different reactor concepts	Domestic generation
Others	Novel technologies	Domestic generation and imports

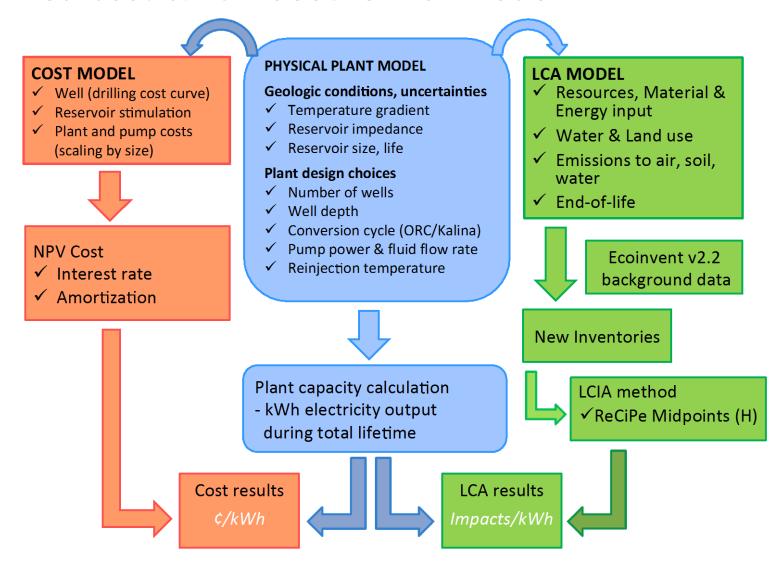
SCCER SoE

Approach

Potentials:

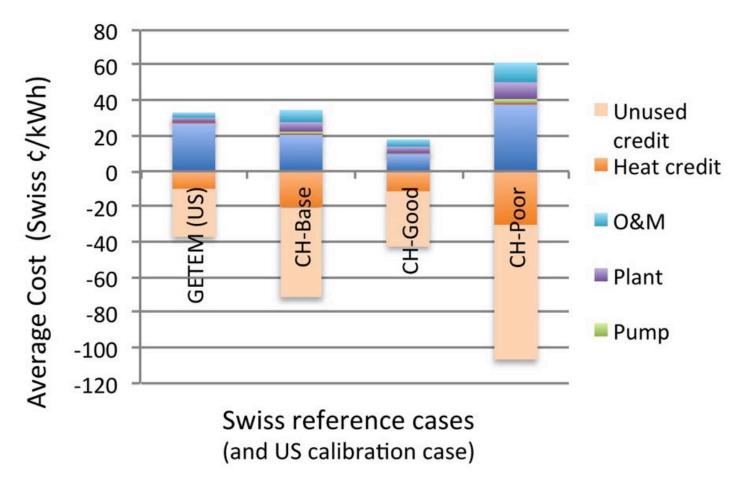
- Based on latest available estimates and expert consultation
- Considering technological, political, economic, and environmental boundary conditions and constraints

Costs:

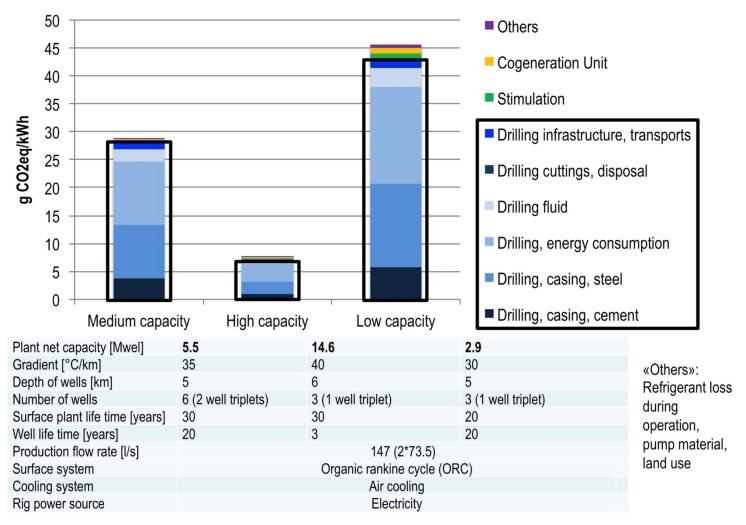

- Estimates based on expected technology development and learning curves
- Considering political regulation, climate policy, etc

Environmental aspects:

- Based on Life Cycle Assessment (LCA)
- Based on expected technology development and learning curves



Linked Cost & LCA Geothermal Model

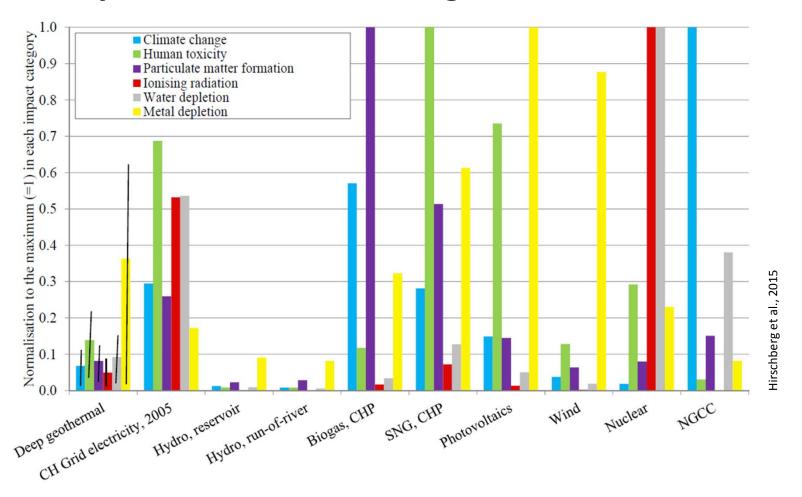

Cost Results – Average Cost by Components

- Well costs dominate other cost components.
- Low thermal efficiency means that if some of the "waste" heat can be sold (e.g. for district heating), this can greatly reduce average costs.

LCA Results – CO2 Emissions

 Life cycle environmental burdens are heavily dominated by well drilling, as shown below for CO₂ emissions (drilling related contributions grouped within boxes).

Overview, which fuel/technology mix is considered in SFOE/SCCER study



el . · · ·		Fuel								
Flec	tricity gene	eration	NG	Dual Fuel				Biomass	e	
	from fue	ls	Gas	-	Gas	S	olide	Liquid		
		Gas/Gas Biogas Wood Non-wood Biofuel Sewage slu		Sewage sludge	Manure, etc.					
	IC Engine	Power Plant		-					-	
rter rator)	Gas turbine	Heavy duty			-			-	-	-
rtei	das turbine	Micro		-				-	-	
converter y generat	Steam turbine	Water	?	-	-			-		-
conv.	Steam turbine	ORC	-	-	-			-	-	-
Energy o	Stirling		-	-	-			-	-	-
Ene		PEM		-		?	?	-	-	-
l lele	Fuel Cell	MCFC		-		?	?	-	-	-
		SOFC	-	-	-					
Biomet	hane product	ion	-	-				-		

- Good data basis available for implemented bioenergy technologies
- Challenging data base for new, innovative technologies

Environmental Performance of Various Electricity Generation Technologies

 The results for geothermal power are similar to those of the "cleanest" renewables such as hydro and wind power.

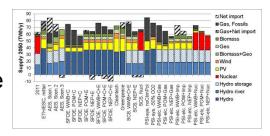
Comparison of Swiss electricity studies 2050

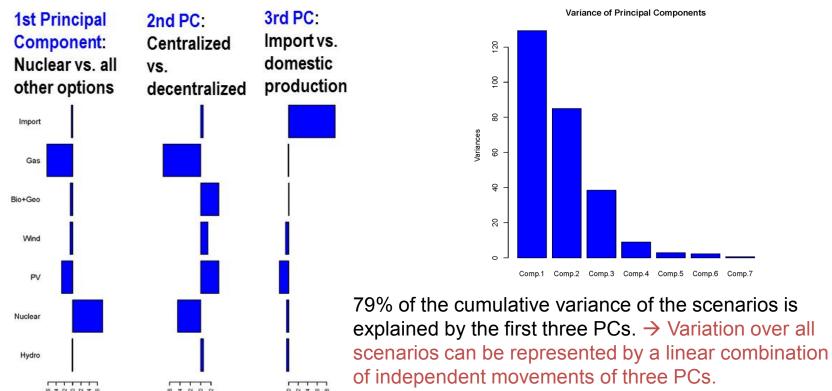
Author	Full name	Modeller	Year	System scope
BFE	Energieperspektiven für die Schweiz bis 2050	Prognos AG	2012	Energy system
VSE	Stromzukunft Schweiz	Pöyry AG	2012	Electricity system (also AT/IT/DE/FR)
ETH / ESC	Energiezukunft Schweiz	G. Andersson, K. Boulouchos, L. Bretschger	2011	Energy system
SCS	SCS-Energiemodell	A. Gunzinger	2013	Electricity system
Greenpeace	Energy [r]evolution	S. Teske, G. Heiligtag (DLR)	2013	Energy system
Cleantech	Energiestrategie	F. Barmettler et al.	2013	Energy system
PSI / ETH (-system)	Energy-economic scenario analysis of Swiss energy system	N. Weidmann	2013	Energy system
PSI (-electricity)	Energie-Spiegel 21	R. Kannan, H. Turton	2012	Electricity system

M. Densing, S. Hirschberg (2015): *Review of Swiss Electricity Scenarios 2050*, PSI-Report, http://www.psi.ch/eem/ → See poster for selected comparison results!

Meta-Analysis (Example of supply mix 2050)

rent in 2030	, see poste	• 1) and the regression below at the creat rings.		


Goals of Meta-Analysis:


- 1. Identification of **key scenarios**, which can be used for:
 - Simplified view for policy makers
 - Input to other models that require low-dimensional data (e.g. large economic-wide models with many other data inputs to keep model sizes small, or stochastic scenario generation)
- 2. Removal of `superfluous' scenarios

Meta-Analysis (Example: Supply Mix 2050)

SCCER SOE

- 1. Key scenarios may be determined by either:
- a) Principal Component Analysis (PCA)
- b) Minimal set of scenarios selected by distance measure
- 2. Scenarios may be removed having zero distance
- 1a) PCA yields major policy decision in Switzerland →

Global Observatory Summary

Approach:

- Spatial scale of the GO stretches from Switzerland to European and global coverage.
- Detailed technology characterization forms the basis for a holistic sustainability assessment of electricity generation options.

Challenges:

 The key challenge is to evaluate the current status and innovation potential of emerging and future highly advanced technologies with regard to their costs, environmental and social performance aspects, resource potentials, and possible future deployment scenarios.

Main impact:

- Develop a framework that allows establishment of a trend-based and partially quantitative comparative perspective on the prospective developments of electricity technologies.
- Establish a common format of a status report that is published in regular intervals.