

Hydrological systems

Paolo Burlando (paolo.burlando@ethz.ch)

Daniela Anghileri (adaniela@ethz.ch)

10 September 2015

In cooperation with the CTI

SUPPLY of ELECTRICITY

Energy

Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederazion svizza

Swiss Confederation

Commission for Technology and Innovation CTI

Objective

- Why understanding hydrological systems is important
- What we need to understand about hydrology
- What is needed to understand the interplay of hydrological systems and hydropower operation

Why understanding hydrological systems is important

- Hydropower (HP) operation and production depends on water availability, i.e. streamflow regime
 - A better knowledge of hydrology allows to increase the reliability of design and operation
- Streamflow regimes depend in turn on climate forcing and river basin response
 - A better knowledge of basin response dependence on climate variability helps anticipating the impacts of severe operating conditions
- The management of reservoirs and related infrastructure depends on processes that are driven by hydrology
 - A better knowledge of hydrology driven processes (e.g. sediment production and transport upstream of reservoirs) helps anticipating the impact of limiting conditions to hydropower systems operation
- The safety of dams and hydropower infrastructure depends on their ability to withstand extreme events
 - A better knowledge of hydrologic extremes allows a reliable design of safety organs of dams (e.g. spillway)

What we need to understand about hydrology SCCER SOE

- Variability of hydrologic response across a range of spatial and temporal scales
 - e.g. hourly scale for extreme events and for hydropower operation in response to market
 - e.g. spatially explicit (distributed) description of the basin response to account for local conditions
- Long-term behaviour of hydrologic systems
 - to increase the representativeness of prediction of the system response and to quantify the **uncertainty** associated to it
- Extreme events
 - high return period peak flows and associated duration and volume
- Changing basin characteristics
 - glacier mass-balance variability
- Impact of streamflow regulation on river corridors due to HP operation
 - spatially explicit description of the propagation of effects along the river corridor
 - physically based models to simulate the basins response stochastic framework

... speaking of basin changes...

HP and hydrology under changing climate (new questions)

• Impact of climate change (CC) on streamflow regimes

- at reservoir locations (existing storage systems, downstream of glaciers)
- in downstream reaches (existing run-of-river systems)
- at locations where the hydropower potential (new systems) could be assessed

Effects of enhanced glacier retreat

- uncertain prediction due to unknown glacier bed topography, ice volume and its evolution
- risk of increased siltation due to the retreat of glaciers and larger exposure debris-covered areas and increased erosion due to higher flood runoff

Hydrological safety of dams (risk)

- verification of design values

 hydrological safety of main structure, safety organs and floodplain downstream against potentially higher flood risk
- slope stability hazards → risk of slope failures and subsequent impulse waves (Vajont effect)

• Enhanced effects of streamflow regulation on river corridors

 due to combined effect of changes affecting the natural regime and changes in HP operation → impact on renewal process of concessions

Example of glacier response, Rhonegletscher

quantiles computed as median of multi-member stochastic ensemble

up to 2050

- no major changes of snowmelt in the early part of the season
- noticeable change of icemelt (the larger and thicker the glacier, the lower is the reduction)
- dependence on glacier morphology

CC impact on reservoir storage dynamics

[Fatichi et al., JoH, 2015]

2041-2050 vs 1992-2010 (control sc.)

Hypothesis: operation ruled by a seasonally variable target level

- in general significantly lower levels in summer and autumn (effect of reduced ice melt)
- changes larger than stochastic variability
- larger variability in future climates (higher dependence on precipitation variability)

coloured band: values within the 10th and 90th percentile of the stochastic simulation

How hydrology under CC affects HP

interactions and causal relationships -> climate change as primary driver

Understanding future hydrology and its impact on HP

INGREDIENTS

- advanced physically based distributed hydrological model
 - hydrological processes + dynamic glacier mass-balance, sediment production and transport
- stochastic high resolution (space-time) climate forcing
 - to account for uncertainties due intrinsic climate variability and future climate
- HP operation model
 - to investigate operation strategies conditional to changing hydrology, energy markets and other renewables
- feedback accounting framework
 - to assess the effects of operation strategies on basin hydrology

Integrated modelling framework

Hydrological modelling

Topkapi-ETH key features:

- spatially distributed
- physically explicit
- snow-ice process dynamics
- geomorphological processes (sediment production and transport)
- anthropogenic structures (reservoirs, diversions, irrigation, and water supply)
- reasonably short computation time
- suited for stochastic analysis

Example on Visp catchment + Mattmark hydropower system

Joint effort of task 2.1 and 2.5

Topkapi-ETH hydrological model:

- spatial resolution: 100 m regular grid
- temporal resolution: hourly
- glacier thickness maps as in [2, 3]

- [2] Huss and Farinotti (2012). Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research, 117,
- [3] Fischer et al. (2014). The new Swiss Glacier Inventory SGI2010. Arctic, Antarctic and Alpine Research, 46(4), 933-945.

Climate change impact on hydrology and reservoir operation

Preliminary results

The AWE-GEN-2d (Advanced WEather GENerator for 2-Dimension grid) is used for the statistical downscaling to formulate a high spatio-temporal resolution fields of precipitation and temperature.

2 multi-member ensembles representing the current climate (2004-2014) and the future climate (2071-2100) as in the official CH2011 climate scenarios.

Joint effort of task 2.1 and 2.5

Climate change impact on hydrology and reservoir operation

Preliminary results

Joint effort of task 2.1 and 2.5

Climate change impact on hydrology and reservoir operation

Preliminary results

The AWE-GEN-2d (Advanced WEather GENerator for 2-Dimension grid) is used for the statistical downscaling to formulate a high spatio-temporal resolution fields of precipitation and temperature.

2 multi-member ensembles representing the current climate (2004-2014) and the future climate (2071-2100) as in the official CH2011 climate scenarios.

Joint effort of task 2.1 and 2.5

Topkapi-ETH is used to simulate the seasonal average trajectories of reservoir inflow and level.

Reservoir operation model: rule curve

Simplest model: rule curve

reservoir operation should follow a target level, corresponding to *normal operating conditions*

✓ Pros

- it can represents the seasonal water volume shift due to reservoir operation
- suited when the focus is on hydrology

X Cons

- it can not properly represent energy production
- not suited when the focus is on energy
- how do we define "normal operating conditions"? (especially when the context changes, e.g., climate change, new RES, no nuclear power plants)

Reservoir operation model: control policies

More complex models: control policies

They account for relevant information available at the time the decision is taken (e.g., level of the reservoir, how much snow is accumulated in the basin, energy demand/price, ...)

Optimal control problem:

reservoir operators are rational agent maximizing a utility function (e.g., revenue)

$$\begin{array}{lll} \textit{objective} & \max_{m_t(\cdot)} J & J = \lim_{h \to \infty} \mathop{E}_{\epsilon_1^h \sim \phi} \Big[\sum_{t=0}^{h-1} \gamma^t g_t(s_t, u_t, \epsilon_t) \Big] \\ \textit{mass balance} & s_{t+1} = f(s_t, u_t, \epsilon_t) \\ \textit{control variable} & u_t = m_t(s_t) \\ \textit{feasibility set} & u_t \in U_t(s_t) \\ \textit{exogenous variable} & \epsilon \sim \phi(\cdot) \end{array}$$

From single to multi objectives

Why?

- There are many stakeholders and points of view:
 - national energy strategy
 - supply security
 - hydropower companies perspective
 - environment conservation
- Relative importance of the objectives may change in time

$$\max_{m_t(\cdot)} \mathbf{J} = |J^1 J^2 \cdots J^n|$$

$$s_{t+1} = f(s_t, u_t, \epsilon_t)$$

$$u_t = m_t(s_t)$$

$$u_t \in U_t(s_t)$$

$$\epsilon \sim \phi(\cdot)$$

Example of control problem for Mattmark operation

two objectives:

- J¹: production
- J²: revenue

$$\max_{m_t(\cdot)} \left[J^1 J^2 \right]$$

$$s_{t+1} = f(s_t, u_t, \epsilon_t)$$

$$u_t = m(t, s_t)$$

one control variable:

 $u_t \in U_t(s_t)$

daily reservoir release

$$\epsilon_t \sim \phi(\cdot)$$

two exogenous variables:

- reservoir inflow
- energy price

Modeling simplifications so far:

- pumping is not considered
- perfect knowledge of inflow
- perfect knowledge of energy price

Joint effort of task 2.2 and 2.5

Example of control problem for Mattmark operation

Joint effort of task 2.2 and 2.5

Solution of the (simplified) deterministic control problem on the historical period 2009-2014

- How much energy can be produced? And what is the associated cost?
- How does the tradeoff change when considering more objectives (e.g., environment conservation)?
- What is the effect of different energy markets (energy-only market, reserve market, ...)?

Future directions

- Integrate reservoir operation control policies in hydrological model
- Assess the joint effects of hydro-climatic and socio-economic drivers on hydropower system operation
- Design robust reservoir operating policies to future system uncertainty
- Assess the effects of present and future reservoir operating polices on the downstream river corridors
- Upscale the analysis (to other case studies and towards the regional scale)

for more information: posters in Task 2.5