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Objective SCCER S SoE

e Why understanding hydrological systems is important
e What we need to understand about hydrology

e What is needed to understand the interplay of hydrological systems
and hydropower operation

Annual Conference, September 10, 2015



Why understanding hydrological systems is important

e Hydropower (HP) operation and production depends on water availability, i.e.
streamflow regime

e A better knowledge of hydrology allows to increase the reliability of design and operation

e Streamflow regimes depend in turn on climate forcing and river basin response
e A better knowledge of basin response dependence on climate variability helps anticipating the
impacts of severe operating conditions

e The management of reservoirs and related infrastructure depends on processes that are
driven by hydrology

» A better knowledge of hydrology driven processes (e.g. sediment production and transport
upstream of reservoirs) helps anticipating the impact of limiting conditions to hydropower
systems operation

e The safety of dams and hydropower infrastructure depends on their ability to withstand
extreme events

e A better knowledge of hydrologic extremes allows a reliable design of safety organs of dams (e.qg.
spillway)
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What we need to understand about hydrology sccer S sok

e Variability of hydrologic response across a range of spatial and temporal scales
e e.g. hourly scale for extreme events and for hydropower operation in response to market

e e.g. spatially explicit (distributed) description of the basin response to account for local
conditions

e Long-term behaviour of hydrologic systems

e to increase the representativeness of prediction of the system response and to quantify the
uncertainty associated to it

e Extreme events
e high return period peak flows and associated duration and volume

e Changing basin characteristics
e glacier mass-balance variability

e Impact of streamflow regulation on river corridors due to HP operation
e spatially explicit description of the propagation of effects along the river corridor
5~ physically based models to simulate the basins response <=
5~ stochastic framework =
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... speaking of basin changes...

© Gérard Stampfli’

University of Lausanne
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HP and hydrology under changing climate (new questions)

e Impact of climate change (CC) on streamflow regimes
e gt reservoir locations (existing storage systems, downstream of glaciers)
e in downstream reaches (existing run-of-river systems)

e gt locations where the hydropower potential (new systems) could be assessed

e Effects of enhanced glacier retreat
e uncertain prediction due to unknown glacier bed topography, ice volume and its evolution
e risk of increased siltation due to the retreat of glaciers and larger exposure debris-covered
areas and increased erosion due to higher flood runoff
* Hydrological safety of dams (risk)

e verification of design values = hydrological safety of main structure, safety organs and
floodplain downstream against potentially higher flood risk

e slope stability hazards -2 risk of slope failures and subsequent impulse waves (Vajont effect)

e Enhanced effects of streamflow regulation on river corridors

e due to combined effect of changes affecting the natural regime and changes in HP operation =
impact on renewal process of concessions
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Example of glacier response, Rhonegletscher

guantiles computed as median of
multi-member stochastic ensemble

up to 2050

* no major changes of
snowmelt in the early part
of the season

e noticeable change of
icemelt (the larger and
thicker the glacier, the
lower is the reduction)

e dependence on glacier
morphology
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CC impact on reservoir storage dynamics SCCER Q SoE

2041-2050 vs 1992-2010 (control sc.) [Fatichi et al., JoH, 2015]
Hypothesis: operation ruled by a seasonally Mattmarksee Lac de Moiry Grande Dixence
variable target level 0580 2250 5350
= 2260 2300
S 2040 2200 2230
. . . e E 2200
e in general significantly lower levels 2220
: 2150
in summer and autumn (effect of 2200 2150
. 100 200 300 100 200 300 100 200 300
reduced ice melt)
Lac des Mauvoisin Lac de Salanfe Lac de Tseuzier
e changes larger than stochastic 1940 [} 1992-2010| 1800
variability _ 1950 1920 | =2041-2050
e , @ 1900 1900 1750
e larger variability in future climates £ 1880
(higher dependence on precipitation 1850 1860 1700
variability) 100 200 300 100 200 300 100 200 300
DoY DoY DoY

coloured band: values within the 10t and
90th percentile of the stochastic simulation
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How hydrology under CC affects HP SCCER D5 SoE

interactions and causal relationships = climate change as primary driver

Climate Change

v

Alteration of hydrologic regimes
(including extremes)

Changes to HP operational rules <- Alteration of hydrology driven processes
7 & management strategies (e.g. erosion and sediment transport)

[ !

Changes to HP “hardware”
S === (e.g. to cope with CCinduced
sediment regime)

Annual Conference, September 10, 2015 9



Understanding future hydrology and its impact on HP
INGREDIENTS

e advanced physically based distributed hydrological model

e hydrological processes + dynamic glacier mass-balance, sediment production and transport

e stochastic high resolution (space-time) climate forcing

e to account for uncertainties due intrinsic climate variability and future climate

e HP operation model

e to investigate operation strategies conditional to changing hydrology, energy markets and
other renewables

e feedback accounting framework

e to assess the effects of operation strategies on basin hydrology

5~ jntegrated modelling framework =
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Integrated modelling framework SCCER S SoE

CLIMATE

DRIVERS SOCIO-ECONOMIC DRIVERS

Precipitation Energy demand

Temperature Energy prices ...
Evaporation ...
ENVIRONMENTAL OPERATION
PROTECTION LEVELS CONSTRAINTS
TASK 2.5
Minimum
Environmental flow l Reservoir release Min/Max production
Sediment threshold ...
HYDROLOGICAL HP-OPERATION
MODEL MODEL
Flow
Sediment ...

HP production

Profit HP
Reliability
Environment T

—>»  Profit
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Hydrological modelling SCCER 5 SoE

Precipitation

Topkapi-ETH key features:
spatially distributed

Land use e physically explicit
* snow-ice process dynamics

 geomorphological processes

Snow/glacier 4 <7
(sediment production and transport)

* anthropogenic structures (reservoirs,
diversions, irrigation, and water supply)

2" sub-surface layer

* reasonably short computation time
Groundwater layer « suited for stochastic analysis

== Flow from adjacent cells
== F/ow exchange in the cell

==Pp ~low to following cell
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Joint effort of task 2.1 and 2.5

Example on Visp catchment +
Mattmark hydropower system

adaptation
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Hydrology-HP
simulation

& hydropower contribution to
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Stakeholders
input and feedback

Topkapi-ETH hydrological model:

ice thickness [m]
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[2] Huss and Farinotti (2012). Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical

Research, 117,

[3] Fischer et al. (2014). The new Swiss Glacier Inventory SGI2010. Arctic, Antarctic and Alpine Research, 46(4), 933-945. 13



Joint effort of task 2.1 and 2.5

Climate change impact on |
hydrology and reservoir operation el v A
Preliminary results ansocsne < | Mimpmemm o
The AWE-GEN-2d (Advanced WEather GENerator for 2- z
Dimension grid) is used for the statistical downscaling to 13 /\
formulate a high spatio-temporal resolution fields of S
precipitation and temperature. Arnual lemperature [81

Density

2 multi-member ensembles representing the current climate i -
2000

(2004-2014) and the future climate (2071-2100) as in the
official CH2011 climate scenarios. 800 1000 1200 1400 1600 1800
Annual rainfall [mm]
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Joint effort of task 2.1 and 2.5

C I i t h i p t
g SCCER-SoE T2.2 T2.3
] Socio-economic HP infrastructure
() () 2 g drivers adaptation
T o
se _
ro O an reserVOIr O eratlon 2 T2 N T24
10 Morpho-climatic Environmental
? 3 drivers \ T.2.5 / impacts
£ Hydrology-HP
simulation
. hydropower contribution to
input to SCCER 2 Swiss ener: gy strategy

Preliminary results

For more details:
Poster “Generation of very high resolution scenarios to investigate climate change impact on

hydropower operation” (Task 2.1) by Peleg et al.
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Joint effort of task 2.1 and 2.5

Climate change impact on

SCCER-SoE T2.2 T2.3
Socio-economic HP infrastructure

x
S
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£ Hydrology-HP
simulation
H H . hydropower contribution to
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The AWE-GEN-2d (Advanced WEather GENerator for 2-

Dimension grid) is used for the statistical downscaling to /\

formulate a high spatio-temporal resolution fields of S
precipitation and temperature. Annual temperature €]

Density

m==m Current climate Future climate

2 multi-member ensembles representing the current climate
(2004-2014) and the future climate (2071-2100) as in the

official CH2011 climate scenarios. 800 1000 1200 1400 1600 1800 2000

Annual rainfall [mm]

Density

Topkapi-ETH is used to simulate the seasonal average trajectories of reservoir inflow and level.
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Reservoir operation model:
SCCER S SoE

rule curve

Simplest model: rule curve level |
current

reservoir operation should follow a target level,

corresponding to normal operating conditions target

level

[
»

v Pros time

* it can represents the seasonal water volume shift due to reservoir operation
* suited when the focus is on hydrology

X Cons

e it can not properly represent energy production

* not suited when the focus is on energy

* how do we define “normal operating conditions”? (especially when the context changes,
e.g., climate change, new RES, no nuclear power plants)
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Reservoir operation model:
A SCCERGSoE
control policies

More complex models: control policies

They account for relevant information available at the time the decision is taken (e.g., level
of the reservoir, how much snow is accumulated in the basin, energy demand/price, ...)

Optimal control problem:
* reservoir operators are rational agent maximizing a utility function (e.g., revenue)

h—1
. . maXJ J — lzm E [ t t\St, U, €t }
objective s (-) hr00 i L v ge(Se, Ut €41)
mass balance Str1 = f(S¢, Uy, €)
control variable Uy = my(s¢) solution

o feasibility set
feasibility set us € Ui(st) AN /
Oo—r
J

exogenous variable € ~ ¢()
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From single to multi objectives

Why?

 There are many stakeholders and points of view:
* national energy strategy
e supply security
 hydropower companies perspective
* environment conservation

* Relative importance of the objectives may change in time

max J = |[J1J* .- J"|

my(-)
St+1 = f(SuUu Et)
Ut = mt(St)
us € Ug(sy)
e~ ¢()

_/3

J2

SCCER Q SoE

Pareto frontier

2
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Joint effort of task 2.2 and 2.5

Example of control problem for
Mattmark operation

SCCER-SoE T2.2 T2.3
Socio-economic HP infrastru |
drive adaptatiol

T24 \ / T24
Mor| ph climatic i al
rrrrrr / impacts
N Hyd | gy HP

Stakeholders
input and feedback

tWO Objectives: input to SCCER 2 (_I \_) hydre Izsv;ire(:onlsn(?:[l;on to
* J1: production

/ * J2: revenue

max Jljﬂ (
me(+)
St+1 — f(5t7 Ug, et) Reservo/\T
Ut = m(t, St> Pumping
one control variable: — 4, € U,(s;) @) plant

daily reservoir release
€t Cb()

\ Balancing

reservoir

two exogenous variables:
* reservoir inflow
. Power
. e * ener rice
Modeling simplifications so far: &Y P plant

. pumping is not considered
. perfect knowledge of inflow
. perfect knowledge of energy price 20



Example Of control problem for Joint effort of task 2.2 and 2.5

SCCER-SoE T.2.2

Socio-economic HP infrastructure
adaptation

T23

y

Mattmark operation o

Stakeholders

Morpho-climatic

drivers \

input and feedback

T.2.5
Hydrology-HP
simulation

i al
/ impacts

& hydropower contribution to
input to SCCER 2

Swiss energy strategy

Solution of the (simplified) deterministic control problem on the historical period 2009-2014
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* How much energy can be produced? And what is the associated cost?
* How does the tradeoff change when considering more objectives (e.g., environment
conservation)?

 What is the effect of different energy markets (energy-only market, reserve market, ...)?
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Future directions SCCER S SoE

* Integrate reservoir operation control policies in hydrological model

* Assess the joint effects of hydro-climatic and socio-economic drivers on hydropower
system operation

* Design robust reservoir operating policies to future system uncertainty

* Assess the effects of present and future reservoir operating polices on the downstream
river corridors

* Upscale the analysis (to other case studies and towards the regional scale)

for more information: posters in Task 2.5
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